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a b s t r a c t 

Conventional potential flow models are known to exaggerate predictions in water wave resonance problems, 

attributed to the inviscid fluid assumption in the potential theory. In this paper, we present a modified potential 

flow model incorporating the viscous dissipation effect. We introduce some ’dissipative surfaces’ inside the fluid 

domain which are defined such that the normal velocity through these surfaces remains continuous but a pressure 

drop occurs across them, representing physically the viscous dissipation. In formulating the boundary value 

problem using Green theorem by a boundary element method (BEM), modified boundary integral equations 

are deduced to include the integral over the dissipative surfaces. We apply this model to three cases where 

overestimation is reported using classical potential models: gap resonance, monocolumn moonpool resonance 

and tuned wave surge converter. Numerical results show that the dissipative surface is effective to dampen the 

responses at resonance. Validation is carried out by comparisons against either experimental data or analytical 

solutions. The spikes in the response amplitude operators (RAOs) produced from the non-dissipative model are 

removed with inclusion of dissipation. Importantly, the proposed model with dissipation effect favorably retains 

the same level of computational efficiency as with the classical potential flow model. 

1. Introduction 

For decades linear frequency-domain potential models have re- 

mained dominant in hydrodynamic analysis in the marine and offshore 

industry. Practical engineering applications have greatly benefited from 

the high efficiency of potential flow models and their well established 

theory. While most of the wave-body interaction problems can be solved 

in the framework of potential flow theory, viscous effects cannot be ne- 

glected in some circumstances when the problems become more com- 

plex. A potential flow model might produce unrealistic predictions in 

the case of wave resonance due to the lack of viscous damping. In con- 

trast, a viscous flow solver based on the Navier-Stokes (N-S) equations 

would be capable of capturing the viscous effects which are expected to 

play a significant role. Though viscous CFD (Computational Fluid Dy- 

namics) tools have been developed for years, till date the application of 

CFD in the marine offshore industry remains costly. Two major aspects 

have limited the wide application of CFD solvers: one is its high demand 

of computational resources; the other is the shortage of expertise in CFD 

in the industry. Both computational capacity and CFD competence can 
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be expensive to establish. It is therefore becoming quite attractive and 

practical to develop potential-flow based models that can consider vis- 

cous effects, while retaining a same level of complexity as the linear 

potential model. 

The idea of incorporating fluid viscous effects into potential flows is 

not new. The effect of fluid viscosity on free surface waves was dis- 

cussed early by Lamb [1] , who derived the decay rate of wave am- 

plitude. Lamb showed the classical viscous decay law of wave ampli- 

tude, 𝐴 ( 𝑡 ) ∼ 𝑒 −2 𝜈𝑘 2 𝑡 , where A is the wave amplitude, k the wavenumber 

and 𝜈 the fluid kinematic viscosity. This decay law illustrates the dis- 

sipation effect on propagating waves in deep water due to viscosity. In 

case of violent wave-body interactions, one however must take into ac- 

count the flow separation and vorticity. In the viscous-potential flow 

model proposed by Joseph and Wang [2] , Wang and Joseph [3] , vor- 

tical component of the velocity was included in the Bernoulli equation 

and a viscous pressure correction was incorporated. Later on Longuet- 

Higgins [4] modified the free surface kinematic condition to include the 

small vortical component of the velocity. Dias et al. [5] made use of the 

linear approximation of the N-S equations and derived a new set of equa- 
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tions in the framework of potential flow. They assumed a small vortical 

component of the velocity and performed Helmholtz decomposition for 

the velocity. The viscous correction was then introduced into both the 

dynamic and kinematic boundary conditions. However, they remarked 

that the fluid kinematic viscosity is too small for the practical applica- 

tion for water wave problems and one ought to use the eddy viscosity. 

Another idea of incorporating the viscous effects is to treat the dis- 

sipative effects as equivalent pressure losses, as that used in the mod- 

elling of flow through a porous screen. A few studies have been pub- 

lished to adopt the pressure loss law which assumes the pressure loss 

is a function of the local flow velocity, such as Evans [6] , Yu [7] and 

Molin [8] . Among others, Chen and Duan [9] adopted the concept of 

’fairly perfect’ fluid to introduce a dissipative force to the fluid velocity 

field. Chen and Duan [9] obtained the modified linear boundary con- 

dition with a dissipative term. The resolved boundary value problem 

with the new boundary condition was shown to retain similar complex- 

ity as a traditional linear potential model for numerical simulation by a 

panel method. By introduction of some dissipative surfaces in the fluid 

domain and imposing the pressure loss on them, Chen et al. [10] ef- 

fectively eliminated the unrealistic spikes in the resonant responses of 

a thin-wall bottomless cylinder. Recently a similar idea was also used 

in the analytical assessment of viscous dissipation effect on an oscillat- 

ing wave surge converter by Cummins and Dias [11] . The inclusion of 

dissipative surfaces allows them to conduct parametric analysis of the 

hydrodynamic performance with viscous effect of the wave surge con- 

verter in a variety of environmental conditions and device dimensions. 

This may not be possible by CFD computations and laboratory tests. We 

have employed a similar concept in this study to introduce dissipation 

into potential flows and solve the wave-body interactions in a modified 

boundary element method. 

In this paper, we present a potential flow model with incorporation 

of viscous dissipation effect and demonstrate its effective application in 

some critical offshore problems. The viscous dissipation is introduced 

into the potential flow by adding some dissipative surfaces near the 

bodies where violent viscous effects are expected. With this introduc- 

tion, the boundary integral equations are modified to include the con- 

ditions on the dissipative surfaces. To represent the viscous dissipation, 

a pressure discharge is imposed across the dissipative surfaces, which is 

assumed to be a function of the local normal velocity. Additional bound- 

ary integral equations for normal flow velocity on the dissipative sur- 

faces are formulated, where second derivatives of Green function need 

to be computed. A dimensionless dissipation coefficient, quantifying the 

viscous effects, can be determined by comparison with model tests or 

systematic analysis by CFD. The dissipation coefficient shall be treated 

as empirical values. 

We apply the numerical model to investigate three practical prob- 

lems in the marine offshore industry, gap resonance, moonpool reso- 

nance and flap-type wave surge converters. For the three cases, viscous 

effects (flow separation and vortex shedding) are found to be significant 

in the experiments as well as CFD simulations; while linear potential 

flow models tend to dramatically overestimate the resonant responses. 

It is demonstrated that the exaggerated predictions in the three exam- 

ples can be effectively reduced to reasonable ranges with introduction 

of viscous dissipation. The importance of viscous effect is evaluated for 

varying structure parameters. Among other advantages, the efficiency 

of the present model remains almost the same as a traditional potential 

code. 

This paper is organized as follows. Section 2 presents the govern- 

ing equations of the boundary value problem, the boundary conditions 

and detailed description of the dissipative surfaces. Formulation with 

dissipation in the modified boundary element method is demonstrated. 

Technique of eliminating irregular frequencies is also briefly described. 

Section 3 simulates gap resonance between two side-by-side rectangular 

barges in beam sea. The dissipation effect on the resonant modes of free 

surface elevation in the gap is illustrated. Section 4 investigates the hy- 

drodynamic performance of a monocolumn platform with a moonpool. 

Comparisons are made between the numerical analysis and tests, and 

excellent agreement is achieved for the water column elevation in the 

moonpool with dissipation effect. Section 5 studies an oscillating wave 

surge converter with the dissipation effect imposed at the edges of its 

flap. The relative importance of dissipation to its hydrodynamic per- 

formance is evaluated through different widths of the flap. Concluding 

remarks are drawn in Section 6 . 

2. Mathematical model 

2.1. Governing equations 

The mathematical model is formulated in the Cartesian coordinate 

system 𝑃 = ( 𝑥, 𝑦, 𝑧 ) with 𝑧 = 0 on the still water surface and 𝑧 − axis point- 

ing positively upwards. The fluid is assumed incompressible, inviscid 

and the flow irrotational. The fluid velocity can be expressed by the 

gradient of a scalar velocity potential Φ( P, t ) as 𝐮 = ∇Φ. Assuming a 

small steepness of the incident wave and small unsteady body motions, 

the free surface boundary conditions are linearized about 𝑧 = 0 and the 

body boundary condition about its mean position. Thus all oscillatory 

quantities can be expressed in a time-harmonic dependent complex no- 

tation. The velocity potential is written as 

Φ( 𝑃 , 𝑡 ) = ℜ 𝑒 { 𝜙( 𝑃 ) e − i 𝜔𝑡 } (1) 

where 𝜔 is the circular frequency of the regular incident wave and ℜ e { · } 

stands for taking the real part. 

The Laplace equation is satisfied in the fluid domain 

∇ 

2 𝜙( 𝑃 ) = 0 . (2) 

The linearized kinematic-dynamic boundary condition on the mean free 

surface 𝑧 = 0 is 

𝜙𝑧 − 𝑘 ′𝜙 = 0 , (3) 

where 𝑘 ′ = 

𝜔 2 

𝑔 
and g is the acceleration due to gravity. Subscripts denote 

partial differentiation with respect to the coordinates, normal vector n or 

time t in the formula. The boundary condition on the body hull surface 

H is 

𝜙𝑛 = 𝑣 𝑛 , (4) 

where v n is the body surface normal velocity pointing into the fluid. On 

the sea bed B the condition becomes 

𝜙𝑧 = 0 . (5) 

In addition, the far field at infinity ( r →∞) satisfies the Sommerfeld ra- 

diation condition 

lim 

𝑟 →∞

√
𝑟 

( 

𝜕𝜙

𝜕𝑟 
− i 𝑘 ′𝜙

) 

= 0 . (6) 

The free surface elevation 𝜂 is given by 

𝜂 = − 

1 
𝑔 
𝜙𝑡 , (7) 

and the pressure on the body surface is 

𝑝 = − 𝜌𝑔𝑧 − 𝜙𝑡 . (8) 

In solving the wave diffraction and radiation problems, the velocity 

potential can be decomposed as the sum of several components 

𝜙 = − i 𝜔 

6 ∑
𝑗=1 

𝐴 𝑗 𝜙𝑗 + 𝐴 0 
(
𝜙0 + 𝜙7 

)
(9) 

where 𝜙1, 2, ⋅⋅⋅, 6 are radiation potentials corresponding to 6 degrees of 

freedom oscillations of the body and 𝐴 1 , 2 , …, 6 are amplitudes of the cor- 

responding motions. A 0 and A 7 are the wave amplitudes of the incident 

and diffracted waves. Here 𝜙0 is the potential of the incident wave and 

given by 
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