
Computerized Medical Imaging and Graphics 70 (2018) 43–52

Contents lists available at ScienceDirect

Computerized  Medical  Imaging  and  Graphics

journa l homepage: www.e lsev ier .com/ locate /compmedimag

Deep  learning  nuclei  detection:  A  simple  approach  can  deliver
state-of-the-art  results

Henning  Höfener a,∗,  André  Homeyer a,  Nick  Weiss a, Jesper  Molin b,  Claes  F.  Lundström b,c,
Horst  K.  Hahn a,d

a Fraunhofer MEVIS, Am Fallturm 1, 28359, Bremen, Germany
b Sectra AB, Teknikringen 20, 58330, Linköping, Sweden
c Center for Medical Image Science and Visualization, Linköping University, 58183, Linköping, Sweden
d Jacobs University, Campus Ring 1, 28759, Bremen, Germany

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 8 February 2018
Received in revised form 13 July 2018
Accepted 23 August 2018

Keywords:
Nuclei detection
Deep learning
PMap
Histology
Image analysis

a  b  s  t  r  a  c  t

Background:  Deep  convolutional  neural  networks  have  become  a  widespread  tool  for  the  detection  of
nuclei  in histopathology  images.  Many  implementations  share  a basic  approach  that  includes  generation
of  an  intermediate  map  indicating  the  presence  of a nucleus  center,  which  we  refer  to  as  PMap.  Nev-
ertheless,  these  implementations  often  still  differ  in several  parameters,  resulting  in different  detection
qualities.
Methods:  We  identified  several  essential  parameters  and  configured  the  basic  PMap  approach  using com-
binations  of them.  We  thoroughly  evaluated  and  compared  various  configurations  on  multiple  datasets
with respect  to detection  quality,  efficiency  and  training  effort.
Results:  Post-processing  of  the  PMap was  found  to  have  the largest  impact  on detection  quality.  Also,
two  different  network  architectures  were  identified  that  improve  either  detection  quality  or runtime
performance.  The  best-performing  configuration  yields  f1-measures  of 0.816  on H&E  stained  images  of
colorectal  adenocarcinomas  and 0.819  on  Ki-67  stained  images  of  breast  tumor  tissue. On  average,  it  was
fully trained  in less  than 15,000  iterations  and processed  4.15  megapixels  per  second  at  prediction  time.
Conclusions:  The  basic  PMap  approach  is  greatly  affected  by  certain  parameters.  Our  evaluation  provides
guidance  on  their impact  and  best  settings.  When  configured  properly,  this  simple  and  efficient  approach
can  yield  equal  detection  quality  as more  complex  and  time-consuming  state-of-the-art  approaches.

© 2018  The  Authors.  Published  by  Elsevier  Ltd.  This  is  an  open  access  article  under  the  CC  BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The quantification of cell nuclei in histological images is
essential for many pathological assessments, including the deter-
mination of various biomarkers. Prominent examples in cancer
diagnosis are the Ki-67 index or the progesterone and estrogen
receptor status. Detecting nuclei also enables the quantification of
tumor immune infiltrates, which have been shown to be of strong
prognostic importance (Mahmoud et al., 2011), and are commonly
assessed in immunotherapy trials (Denkert et al., 2016).
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Such assessments are usually performed by visual estimation,
which is labor- and time-intensive and can lead to high inter- and
intra-observer variability (Andrion et al., 1995). The ongoing digi-
talization in pathology allows for automated analysis methods to
support pathologists at such tasks and to increase the reliability of
quantitative assessments.

However, the automatic detection of cell nuclei is challenging.
The appearance of nuclei varies considerably with staining and tis-
sue preparation conditions, as well as with different nuclear types
and pathologies.

The first attempts to automate nuclei detection date back to
the mid-1950s (Meijering, 2012), starting with static rule-based
approaches from simple intensity thresholds to using intensity-
derived features. Those approaches suffered from not being able to
capture the complexity of the input data sufficiently well. The next
generation of methods addressed the aforementioned variability
by using hand-crafted features and applying machine-learning to
build more complex and flexible rule sets (Arteta et al., 2012;
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Kårsnäs et al., 2011; Vink et al., 2013). Recent developments mainly
employ convolutional neural networks (CNN) (Jacobs et al., 2017;
Janowczyk and Madabhushi, 2016; Sirinukunwattana et al., 2016;
Wang et al., 2016; Xie et al., 2016, 2015a,b; Xing et al., 2016), as
those tend to yield significantly better results. The first major break-
through was reported by Cireş an et al. (2013), who  were able to
detect mitotic nuclei with an f1-measure of 0.782, while the closest
competitors achieved 0.718.

Most deep learning–based nuclei detection methods employ
CNNs to predict a value for each input image pixel. That value rep-
resents the proximity to a nucleus center or the probability of being
close to one. Together, the values of all input image pixels constitute
a map, which we  refer to as PMap. Nuclei positions are afterwards
determined by finding local maxima in the PMap. Predicting the
PMap can be interpreted as either a classification or a regression
problem. The classification problem is to distinguish nucleus center
and background positions and to populate the PMap with the each
position’s probability to belong to the nucleus center class, whereas
the regression problem is to map  a position to a continuous value,
which is dependent on the distance to the nearest nucleus center.
This basic PMap approach will be described in more detail in Section
2.1.

The basic PMap approach is controlled by several parameters.
Examples are the post-processing of the PMap before finding local
maxima, the use of data augmentation or the use of dropout.

1.1. Related work

There are different variants of the basic PMap approach pro-
posed in the literature, using CNN classification or regression, even
if that term is not used.

As described above, Cireş an et al. (2013) have used CNN classi-
fication for the detection of mitoses. Their approach uses a 12 and
a 10 layer deep network and achieves processing speeds between
0.01 and 0.03 megapixels per second at prediction time. CNN clas-
sification with the 8 layer deep AlexNet (Krizhevsky, 2010) has
been used by Janowczyk and Madabhushi (2016) to detect lympho-
cytes in breast cancer images. They have achieved an f1-measure
of 0.900. The 7 layer deep LeNet (LeCun et al., 1998) classifica-
tion network has been applied by Wang et al. (2016) to detect
nuclei for a subsequent cell subtype classification. For the detec-
tion, they have reported an f1-measure of 0.822. Khoshdeli et al.
(2017) have used a 5 layer deep CNN classification for the detec-
tion of nuclei in Hematoxylin and Eosin (H&E) stained images of
various tissue types. They have proposed to preprocess the input
images by extracting the Hematoxylin channel using color decon-
volution and applying a Laplacian of Gaussian filter. The result is
then fed into to the network. An f1-measure of 0.722 has been
reported. Jacobs et al. (2017) have used a 14 layer deep regression
network to detect nuclei in H&E stained prostate cancer biopsies for
a subsequent nucleus type classification. The authors have evalu-
ated transfer learning for the application with limited training data.
They have trained on colon images and have fine-tuned their model
with the prostate images. They have reported f1-measures between
0.849 and 0.864, depending on the amount of training data for the
fine-tuning, as well as a processing speed of 2.2 megapixels per
second.

Some approaches leave out the extraction of local maxima from
the PMap. Xie et al. (2016) have estimated the nuclei count in an
image region by integrating the PMap over that region. They have
applied a 9 layer deep network. Xing et al. (2016) have applied
a threshold to the PMap and have used the connected regions as
initialization for nuclei segmentation. The generation of the PMap
has been performed with 0.008 megapixels per second.

In other publications, the basic PMap approach has been used as
a baseline algorithm to compare the proposed methods with. Xie

et al. (2015a) have mapped each pixel of the input image to a 2D-
vector pointing to the nearest nucleus center, using an 8 layer deep
network. At prediction time, the positions, where the vectors point
to, are accumulated to form a PMap. On Ki-67 stained neuroen-
docrine tumor (NET) images they have reported an f1-measure of
0.815 and a processing speed of 0.007 megapixels per second. They
have compared their method with the basic PMap approach using
CNN classification, which has yielded an f1-measure of 0.784. In
another publication, the same authors have used a 7 layer deep
network to predict a small region of the PMap at once instead of a
single pixel value (Xie et al., 2015b). As before, they have accumu-
lated the predictions to generate the PMap. They have evaluated
the approach on H&E stained breast tumor images, Ki-67 stained
NET images and phase contrast images of HeLa cervical cancer cells.
F1-measures of 0.913, 0.906 and 0.957 have been reported, respec-
tively. Processing speed has been 0.01 megapixels per second. A
comparison with both CNN classification and regression according
to the basic PMap approach has been conducted, but no quantita-
tive measures have been given. Sirinukunwattana et al. (2016) have
proposed a similar approach of predicting a region of the PMap.
In contrast to (Xie et al., 2015b), the first 6 layers of their net-
work are followed by a parameter estimation layer and a spatially
constrained regression layer. They have reported an f1-measure
of 0.802 on H&E stained images of colorectal adenocarcinomas
and processing speed of 0.02 megapixels per second. They have
compared their method with the basic PMap approach using CNN
regression, for which an f1-measure of 0.692 has been reported.
Xu et al. (2016) have used multiple stacked auto-encoders to learn
feature representations of the input images in an unsupervised
manner. The features are then fed into a softmax classifier, which
classifies each input patch as either nuclear or non-nuclear. The
softmax classifier has been trained supervisedly and the authors
have reported an f1-measure of 0.845 on H&E stained breast cancer
images. They compare their method with the basic PMap approach
using CNN classification. There, an f1-measure of 0.820 and pro-
cessing speed of 0.04 megapixels per second have been reported.

We  want to stress here that the reported f1-measures should not
be compared directly. Most approaches have been evaluated using
different datasets with different nuclear types, varying quality and
tissue complexity. Additionally, the hardware used to perform the
experiments, especially the usage of GPUs, has a great influence on
the processing speed. Although only comparable to a very limited
extent, we  listed processing speeds if available for completeness.
Only few of the approaches above explicitly focused on process-
ing time, although speed is critical when aiming at applying these
methods in clinical routine.

In summary, for nuclei detection using deep learning, the basic
PMap approach is widely used in the literature. Even if not termed
basic PMap approach, numerous publications describe such meth-
ods either as the proposed or as alternative solutions for nuclei
detection tasks. However, there are some parameters of these
methods that differ from case to case. Most of the papers above
only present a single configuration of them. There is no system-
atic evaluation of the influence and importance of the individual
parameters.

The main contribution of this work is a systematic listing, eval-
uation and comparison of these parameters. We  assess the impact
of the individual parameters with respect to detection quality, effi-
ciency and training effort. By doing so, we  give guidance on which
parameters to focus on when optimizing nuclei detection with the
basic PMap approach. The second contribution is to combine those
parameter settings, which perform best in our experiments and to
evaluate this configuration. We  show that the basic PMap approach
delivers state-of-the-art results when parameterized well.
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