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A B S T R A C T

In solving multiplication problems, children use both fast retrieval-based processes and slower computational
processes. In the current study, we explore the possibility of disentangling these strategies using information
contained in the observed response latencies using a method that is applicable in large data sets.
We used a tree-based item response-modeling framework (De Boeck & Partchev, 2012) to investigate whether

the proposed qualitative distinctions in fast and slow strategies can be detected. This so-called fast-slow model
was applied to responses to a set of multiplication items, totalling more than 180,000 responses, collected in an
online computer-adaptive training environment for mathematics.
Parameters describing person characteristics (ability) and item characteristics (easiness) are estimated with

the model. Both item and person characteristics differed between fast and slow processes and match predictions
from substantive models of multiplication. Moreover, the parameters allowed us to describe the fast and slow
strategies in more detail. Results emphasize the utility of the fast-slow model in the detection of strategies in
multiplication but also in other areas of cognition and learning where strategies are expected.

1. Introduction

The concept of strategy is central in the study of human problem
solving. Important aspects of problem solving behavior such as accu-
racy, duration, and type of errors, are due to the choice of the solution
strategy. For instance, in solving arithmetic items, people may use ei-
ther retrieval from memory or a computational strategy (Ashcraft &
Guillaume, 2009; Dowker, 2005; LeFevre et al., 1996), where the
former typically requires less time than the latter. In the case of basic
multiplication (for example single-digit problems), detailed models for
the retrieval process exist (Geary, Widaman, & Little, 1986; Verguts &
Fias, 2005), and several models for computational strategies have been
developed as well (Imbo, Vandierendonck, & Rosseel, 2007; Lemaire &
Siegler, 1995). These models make different predictions about item
difficulty and solution time (van der Ven, Straatemeier, Jansen,
Klinkenberg, & van der Maas, 2015).

When measuring arithmetic ability by using psychometric tests,
such as in IQ tests, individual differences in strategy choice are usually
not taken into account. Arithmetic ability is ultimately tested by
counting the number of correct items that participants solve in any
particular test (e.g., Aunola, Leskinen, Lerkkanen, & Nurmi, 2004; Liu,
Wilson, & Paek, 2008). Different patterns of response times and errors
are hence ignored when the aim is to compare individuals on a scale of

arithmetic ability. Using the number of correct responses may be war-
ranted when testing and comparing test takers, but may be in-
appropriate when concerned with studying development and under-
standing ability differences. In the latter case, different qualitative
processes or strategies should be considered.

In spite of the importance of the strategy concept, detecting stra-
tegies is still a major challenge in many areas of cognitive science.
Verbal reports and neural imaging features are both correlated with
strategy choice (Jost, Beinhoff, Hennighausen, & Rösler, 2004; Price,
Mazzocco, & Ansari, 2013; Tenison, Fincham, & Anderson, 2014), but
both also have pitfalls as strategy indicators. Verbal reporting, the most
commonly accepted method of strategy detection, may interfere with
the solution process and bias strategy choice (Kirk & Ashcraft, 2001;
Reed, Stevenson, Broens-Paffen, Kirschner, & Jolles, 2015). Another
important problem with using verbal reports for detecting strategy
choice is that it is time-consuming and thus not feasible in combination
with large scale automatic assessment of arithmetic abilities, which is
very common nowadays. The latter problem also applies when using
neural patterns to identify strategy choice. A third approach, whereby
strategies are assessed through a combination of latencies and accuracy,
is more promising. The utility of response times, obtained with large-
scale computer-based assessment, has already been demonstrated for
the detection of individual differences in reading literacy and problem
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solving (Goldhammer et al., 2014). For the detection of strategies we
use a different approach. This approach will be applied to develop-
mental data on multiplication skills but applications to other cognitive
skills are possible as well (see Coomans, Hofman, Brinkhuis, van der
Maas, & Maris, 2016), as long as strategies are associated with diver-
ging patterns of accuracy and response times.

An important developmental trend in learning multiplication can be
described by changes in strategy choice. Initially children will apply
various slower computational strategies (Freudenthal, 1991). Over
time, these computations become more sophisticated (Lemaire &
Siegler, 1995). Through practicing multiplication, children will build
up a network of associations between numbers. When this network is
sufficiently strong, children will be able to confidently retrieve answers
to items, and will tend to use faster retrieval from this network instead
of a slower computational strategy (Siegler, 1988). This development
from computation to automaticity is in line with the more general
theory on skill acquisition (Ackerman, 1988; Ackerman & Cianciolo,
2000). Children with learning difficulties do not show this typical
transition from computational to retrieval strategies (De Smedt,
Holloway, & Ansari, 2011; De Visscher & Noël, 2014). After years of
practice, adults will rely predominantly on memory retrieval for single
digit multiplication (LeFevre et al., 1996). Hence, the largest divide in
strategy choice is whether children and adults use a retrieval strategy or
a computational strategy.

In this paper, we investigate whether the fast-slow model
(DiTrapani, Jeon, De Boeck, & Partchev, 2016; Partchev & De Boeck,
2012) allows for automatic analyses of strategy use. The fast-slow
model is based on splitting the data into fast and slow responses and
estimating separate parameters for each of the processes. A third pro-
cess, based on the response latencies, indicates choice for the fast or
slow process. This approach is intermediate between the purely psy-
chometric approach of fitting IRT models to capture multiplication
ability on a single latent trait (e.g., Aunola et al., 2004; Liu et al., 2008)
and the purely cognitive approach of using computational models to
predict response accuracy based on problem characteristics and stra-
tegies (partial abilities) (e.g., de la Torre & Douglas, 2008).

We will first introduce the fast-slow model, derive predictions for
the case of multiplication, and then apply the model to a data set. This
data set includes a large set of responses, both accuracy data and re-
sponse times, collected with a popular Dutch online adaptive learning
environment for mathematics; the Math Garden (Klinkenberg,
Straatemeier, & van der Maas, 2011; Straatemeier, 2014).

1.1. The fast-slow model

The fast-slow model is a tree-based item response theory (IRT)
model (De Boeck & Partchev, 2012). The rationale of this model is that
responses are governed by one of two processes, one fast and one slow,
that can be separated by an additional observed variable, in this case
the (recoded) response times. The response times are recoded to either
fast (1) or slow (0), which serves as an approximation of the underlying
process and is modeled as a latent speed dimension. This tree model can
be formulated as follows, assuming that a (unidimensional) Rasch
model (Rasch, 1960) holds in dimension d, where d=1,2, or 3 and
denotes the speed-, fast- and slow dimensions, respectively. In these
dimensions, the probabilities of respectively a fast response, a fast and
correct response, and a slow and correct response are modeled using a
Rasch model. In the Rasch model, the probability of a correct (or for the
speed dimension a fast) response of a person p on an item i in dimension
d is given by the logistic function:
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where θpd denotes the ability of person p and βid denotes the easiness of
item i on dimension d. Hence, the full model has three sets of person

parameters, and three sets of item parameters: θp1 reflects the overall
probability of a person to generate a fast response, θp2 reflects the
ability to give a fast and correct response, and θp3 reflects the ability to
give a slow and correct response. Likewise, item easiness parameters
correspond to the probability that items are answered fast versus slow
(βi1, with a high βi1 indicating a high probability of a fast response), the
probability of a correct response given that the response was fast (βi2),
and the probability of a correct response given that the response was
slow (βi3).1 In line with De Boeck (2008), both θp=(θp1,θp2,θp3) and
βi=(βi1,βi2,βi3) are treated as random variables with µ( , )p
and µ( , )i , constraining μθ to zero to identify the model (see
Appendix A for a description of the model estimation procedure).

1.2. Qualitative differences in the fast-slow model

Within the fast-slow model, qualitative differences between fast and
slow processes would be reflected by a different ordering of the item
parameters, person parameters or both, in the fast compared to the slow
component of the model. Hence, to test the hypothesis that the fast and
slow processes differ qualitatively, the full fast-slow model with dif-
ferent item parameters for the fast and the slow process as well as
different person parameters for the two processes is compared against
three constrained versions of the model. This resulted in four different
models: (1) the full fast-slow model, (2) constrained item parameters:
i.e., βfast= βslow, (3) constrained person parameters: i.e., θfast= θslow,
and (4) a baseline model in which both item and person parameters are
constrained. If one, or both, constraints resulted in a worse model fit (in
terms of prediction; see Section 2.2), this would support the notion that
indeed qualitatively different processes were involved in the fast and
the slow responses. However, from a measurement perspective different
item parameters do not necessarily suggest that the person parameters
are different, since these abilities could be highly correlated (the same
holds for item parameters if person parameters are different).

Whenever a constraint was imposed we allowed for a difference in
the overall mean and in the variances of the fast and slow item and/or
person parameters. This reflects the idea that only a correlation be-
tween the fast and slow parameters that is significantly lower than one
truly reflects a qualitatively different process. For example, if fast re-
sponses are more often correct than slow responses it does not ne-
cessarily suggest that slow and fast responses have distinct response
processes. It may be that for slower responses, retrieval is simply more
difficult. However, if for some persons or items the slow responses are
more often (in)correct than the fast responses, thereby influencing the
correlations of these parameters, this would indeed suggest that dif-
ferent response processes are involved.

1.3. Empirical predictions for a fast-slow model of multiplication processes

Given the observed qualitative differences between fast and slow
strategies in multiplication (LeFevre et al., 1996), the full fast-slow
model is expected to describe the data best. In this model, both item and
person parameters have different estimates in the fast compared to the
slow process. It is expected that the fast process will more often match
fact retrieval and that the slow process will more often match compu-
tational strategies. If this is the case, some parameter estimates of the
processes should relate differently to item and person characteristics.
Finding that these relations match common findings in the multi-
plication literature would support the claim that the fast-slow model is
a useful method to identify strategies in multiplication at the individual
level.

1 For the readability of the remainder of the paper, we refer to θp1, θp2 and θp3
as θspeed, θfast, and θslow, and to βi1, βi2 and βi3 as βspeed, βfast, and βslow.
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