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A B S T R A C T

In this note we investigate how the assumption of small deformations affects the estimation of the ultimate
resistance to lateral pile movements in clay. For that we perform coupled hydro-mechanical finite element
analyses, using the Modified Cam Clay model to describe soil behaviour. Validation of the numerical metho-
dology via small-strain analyses is followed by an investigation on how the ultimate resistance diverges from
exact plasticity solutions when large displacements are considered. Results suggest that the failure mechanism
depends on the pile displacement required to mobilise the ultimate resistance, and that small-strain plasticity
solutions provide upper bounds of the ultimate resistance.

1. Introduction

Estimation of the ultimate soil resistance developing on piles sub-
jected to lateral loads is a classical problem in foundation engineering. A
number of studies deal with determining the distribution of soil re-
sistance to individual pile movements with depth, based on full-scale or
1-g model tests [e.g. 1–3], analytical upper bound limit analysis [e.g. 4,5]
and displacement finite element analysis [e.g. 6,7]. It is widely accepted
that the limiting lateral resistance per unit pile length pu increases with
depth from an initial low value at the ground surface to a peak value at a
certain, critical depth. This peak resistance is commonly expressed in
terms of the normalised ultimate resistance factor Npu (ultimate load per
unit length normalised with respect to the undrained shear strength su
and the pile diameter D). A number of researchers [e.g. 8–11] provide
solutions for estimating Npu, which are based on a plane strain model of
the pile section and its surrounding soil, and assume a two-dimensional
flow around failure mechanism. The analytical lower-bound plasticity
solution of Randolph and Houlsby [8] provides Npu= pu/suD for arbi-
trary values of adhesion at the soil-pile interface as:
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where α is the adhesion factor, equal to the ratio of the ultimate interface

shear stress to the undrained shear strength.
The above plasticity solution is derived while assuming infinitely

small deformations and rigid-plastic Tresca soil, and thus ignores the
effect of geometric nonlinearity. The effect of this simplifying assumption
on the ultimate lateral resistance is the focus of this technical note. In the
following we will show that Eq. (1) provides an upper bound on the soil
resistance, which decreases as the soil becomes softer and the deforma-
tions required to mobilise the ultimate resistance increase. Note that the
scope of this study is limited to normally consolidated soils under iso-
tropic initial stresses, therefore it is focused on highlighting geometric
nonlinearity effects rather than investigating in detail the effect of soil
undrained stiffness on the magnitude of the lateral capacity factor.

2. Material model and properties

The Modified Cam Clay (MCC) model [12] is used in this study to
describe the mechanical response of clay while considering different
stiffness in loading and unloading-reloading, using the typical parameters
listed in Table 1. Although the MCC model is described in detail in many
textbooks, certain aspects of the variant of the model implemented in
ABAQUS/Standard [13] are repeated in the following, as it degenerates to
the standard Cambridge formulation only under specific conditions. The
yield surface of the model is given by the following expression [13]:
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3 is the third stress invariant,

M is the gradient of the critical state line in the p-t plane,
β is a parameter that controls the shape of the yield surface on the

wet side of the critical state line in the p-t plane,
α is the size of the yield surface,
K is the ratio of the yield stress in triaxial tension to the yield stress

in triaxial compression, and controls the shape of the yield surface in
the Π-plane,

In this study we consider β=1 and K=1, thus the shape of the
yield surface does not depend on the third stress invariant, and its Π-
plane section is the original MCC circle.

The incremental stress–strain relation is provided as:
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where e is the void ratio. The latter is related to the volumetric strain εv

as:
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The tangent bulk modulus, Kt can be calculated from Eq. (3) as
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Furthermore, the tangent shear modulus, Gt is calculated by in-
troducing the Poisson’s ratio, v as

= −
+

G v
v

K3(1 2 )
2(1 )t t

(6)

In summary, the three parameters κ, λ and v can be used to describe
the undrained stiffness of normally consolidated (OCR=1) MCC soil
with initial void ratio e0. The effect of soil stiffness on the developing soil
resistance to lateral pile movements can be investigated by varying the
model parameters κ and λ (Table 1) while keeping the initial state para-
meters constant, and setting the Poisson’s ratio to be equal to v=0.15.

The analysis can be further simplified by considering isotropic initial
stress conditions. In this case, the undrained shear strength su of normally
consolidated MCC soil used in the calculation of Npu is given as [14]:
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For plane strain conditions, as in the problem examined herein, the
mobilised undrained strength depends on the shape of the plastic po-
tential in the Π-plane [15]. As we assume associative flow, the Lode
angle θ at failure is constant, and depends according to Potts and Gens
[15] on the expression used to describe the yield surface in the Π-plane.
In the case where the section of the yield surface in the Π-plane is a
circle the Lode angle at failure is given as [15]:
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where ψ is the dilation angle, therefore failure occurs at θ=0°. Under
these conditions g(θ) in Eq. (7) is equal to [14]:

= = =g θ M J p M( ) / / 3j 2 (9)

Thus for Κ0
NC = 1 adopted in this study:

Imposed displacement

Initial pressure

Fig. 1. Finite element mesh and geometry of the two dimensional plane strain model in ABAQUS.

Table 1
MCC parameters.

Soil parameter Value

Slope of compression line, λ 0.3/varying
Slope of critical state line, M 1.2
Initial void ratio, e0 3
Poisson’s ratio, v 0.15
Initial isotropic mean stress, p0′ (kPa) 50
Overconsolidation ratio, OCR 1
Permeability, kv= kh (m/s) 1×10−10

Slope of recompression/swelling line, κ 0.03/varying
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