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A B S T R A C T

A finite element based scheme for modelling kink band formation in fiber composites was developed. The model is computationally efficient by requiring only a few
number of fiber/matrix layers representing the microstructure of the composite material. Yet, in comparison to finite element models including many fiber/matrix
layers, the model is accurate by specifying periodic boundary conditions along the sides of the representative volume elements. These periodic boundary conditions
allow for a rotation of the kink band after its initiation as observed in full-scale finite element calculations and experiments. Three different computational schemes
for determining the kink band rotation have been suggested and compared.

1. Introduction

A critical failure mode leading to loss of load carrying capacity in
composite materials under compression parallel to the fibers or layers is
the formation of kink bands. The development of efficient numerical
methods for studying kink band initiation and propagation in fiber
composites have been the objective in a number of previous works.
Finite element studies based on individually discretized, planar fiber
and matrix models were reported in [1] and [2]. The models were ex-
tended to 3D simulations in [3]. It was in these studies established that
a large number of layers had to be included in such computational
models to eliminate effects from the sides of the representative volume
element, which are taken as free edges. A drawback of such methods is
obviously the computational effort needed to discretize large volumes
of fiber/matrix layers in realistic simulations of composite structures
and to avoid effects of boundary conditions imposed in the simulations
of infinite kink band development. The study in [4] of kink band for-
mation in realistic composite structures emphasizes the complexity of
the problem and the need for developing efficient numerical schemes
for predicting onset of failure.

An approach for overcoming the computational challenges involved
in individually discretized fiber-matrix models for realistic geometries
is described in [5]. Here, a coupling between a sub-model and a super
element was introduced. Another approach is to introduce an effective
constitutive model representing the composite material in the finite
element formulation. Such a constitutive model for composite materials
including non-local effects due to fiber bending stiffness was introduced
in [6] and applied in finite element simulations of kink band formation
in materials with variations in the local fiber orientation to simulate

realistic composite structures. Input parameters in the model for-
mulated in [6] are effective overall constitutive models for the com-
posite material. The model incorporates a characteristic length scale
and, thus, is capable of predicting the kink band width.

In [7] and [8], a constitutive model for a composite material in-
cluding the constitutive responses of the fibers and the matrix was in-
troduced and applied to study kink band initiation in perfect as well as
imperfect structures. Input parameters to this model are individual
constitutive models for the fibers and the matrix, along with volume
fractions and continuity and equilibrium conditions at interfaces. The
constitutive model was in [9] used to study the post buckling response
and kink band broadening observed in ductile composite materials [10]
and [11]. The constitutive model in [7] was in [12] implemented as a
user defined material model in a commercial finite element software
package, and was used to replicate the simple model predictions in [7]
and [8]. The results based on this formulation were compared to the
layer-wise individually discretized finite element calculations of [1]
and [2] and were also used to study more realistic composite structures
[13] where such approaches are computationally more efficient than
individually discretized fiber-matrix layer models.

Recently, a mixture of the two approaches in [6] and [7] was for-
mulated in [14]. A micro-mechanically non-local constitutive model for
the composite incorporating a length scale to account for fiber bending
stiffness effects was formulated. An implementation of the model in a
finite element scheme was also done in [14] and demonstrated the
capabilities of such models to predict the onset and evolution of a kink
band. The results were in good agreement with individually discretized
fiber-matrix layer models. Another recent contribution [15] introduces
a length scale to model of kink band formation for damage growth by
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coupling strains to the width of the kink band.
Parallel to the efforts in developing constitutive models for fiber

composites, some of which are mentioned above, other studies have
focused on developing efficient computational tools for studying in-
finite kink band formation based on the individually discretized fiber-
matrix layer formulation, see e.g. [16] and [17]. Here, a finite re-
presentative volume element for predicting the onset of kink bands was
formulated as just a few layers of fibers and matrix but with periodic
boundary conditions imposed to simulate the infinite kink band. The
models imposing periodic boundary conditions at the sides of the re-
presentative volume elements are computationally more efficient than
calculations performed assuming free boundaries since a large number
of layers are required to eliminate the edge effects. However, the per-
iodic boundary conditions, which should model a finite sample of an
infinite specimen more appropriately, impose geometric restrictions on
the kinematics associated with kink band formation. As an example, the
previous models do not allow for a rotation of the kink band in the post-
failure regime, i.e. the kink band orientation is fixed during the com-
plete loading of the specimen. This is in contrast to observations on
large-scale finite element simulations and experiments in e.g. [1] where
the kink bands rotate in the post-failure regime. The consequence of
fixing the kink band orientation is an unrealistic prediction of the load
versus end shortening response for the composite.

In the present work, the focus is on developing a computational tool
for infinite kink band analysis. It has the advantage of the model in e.g.
[17] and [18] of being computationally efficient by just requiring a few
fiber-matrix layers in a representative volume element with incre-
mental periodic boundary conditions at the edges to model an infinite
kink band. The model does not restrict the kinematics including the
rotation of the kink band, and various strategies are pursued for letting
the kink band orientation develop as deformation and failure in the
composite progresses. The computational scheme is shown to be com-
putationally efficient compared to previous models, and the predictions
of load response is in good agreement with data from the literature.

2. Non-linear finite element analysis

An incremental finite element scheme for predicting the onset and
development of a kink band in a fiber composite allowing for large
deformations and large strains is based on the total Lagrangian for-
mulation. The principle of virtual work is written in incremental form,
which when using the summation convention for repeated index has the
form
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where A0 is the undeformed area, Sαβ are the contravariant components
of the second Piola-Kirchhoff stress tensor, PleaseCheck denotes an in-
cremental quantity,

∼δ ( ) denotes a virtual quantity. Furthermore, in (1)
Tα and uα denote tractions pr. unit width and displacements, respec-
tively, and S0 denotes the undeformed circumference, and Eαβ are the
covariant components of the Green-Lagrange strain tensor, defined as
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Here Gαβ and gαβ are the covariant components of the metric tensors
of the deformed and undeformed configurations, respectively. The term
in the parenthesis on the right hand side of (1) is included as an equi-
librium correction term. At each increment in the loading procedure,
equilibrium iterations are performed. The following relations between
the strain tensors in (1) and the displacements are utilized in the finite
element implementation using the notation (),α for covariant differ-
entiation with respect to coordinate xα
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The vector of displacement increments PleaseCheck are discretized
using isoparametric 8-noded plane strain elements. The integrations in
(1) needed to obtain the components of the stiffness matrix are carried
out using reduced 2× 2 Gauss integration. A forward Euler scheme is
formulated for integration with respect to the pseudo-time variable
PleaseCheck with equilibrium iterations at each increment. Increments
are specified in an arc-length procedure introduced to handle snap-
through and snap-back behavior in the load displacement response. An
in-house finite element solver is developed for the purpose; all details of
the implementation are explained in [18]. Thereby, full control of the
boundary conditions imposed on the representative volume element is
ensured which is important when introducing the rotating periodic
boundary conditions later.

The constitutive response of both the fibers and the matrix is
modelled by a finite strain version of J2 deformation theory [19], which
in 3D takes the following form for the tensor of instantaneous elastic-
plastic moduli Lijkl relating rates of Kirchhoff stresses, PleaseCheck, to
rates of strains, PleaseCheck,
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The secant modulus, Es, and the tangent modulus, Et, is evaluated
from relating the effective stress, σe, where
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to a point on the uniaxial Cauchy stress, σ, vs. logarithmic strain, ε,
curve which is approximated by a Ramberg-Osgood expression of the
type
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Finally, the following relations between the Kirchhoff stress tensor,
τij, the Cauchy stress tensor, σij, and the second Piola-Kirchhoff tensor,
Sij, are utilized
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where PleaseCheck and g are the determinants of the metric tensors (Gαβ
and gαβ), and PleaseCheck are the covariant components of the inverse
of the deformation gradient tensor. Two alternative plasticity theories
have been compared to predictions based on (4). These are the finite
strain versions of J2 flow theory in [20] and the J2 deformation theory
[21]. Most previous work on kink band formation in polymer matrix
composites have relied upon J2 plasticity models and extensive ex-
perimental validation of the models for a PEEK matrix/carbon fiber
system has been carried out in [1].

In the numerical procedure, the reference configuration for the
undeformed geometry is a Cartesian frame so that gαβ in (2) has the
components, g11= g22=1 and g12= g21=0. The incremental version
of the virtual work principle (1) results in a linear set of equations for
the nodal displacement rates in the FEM discretization of PleaseCheck.
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