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a b s t r a c t 

The construction of images of the Earth’s interior using methods as reverse time migration 

(RTM) or full wave inversion (FWI) strongly depends on the numerical solution of the wave 

equation. A mathematical expression of the numerical stability and dispersion for a partic- 

ular wave equation used must be known in order to avoid unbounded numbers of ampli- 

tudes. In case of the acoustic wave equation, the Courant–Friedrich–Lewy (CFL) condition is 

a necessary but is not a sufficient condition for convergence. Thus, we need to search other 

types of expression for stability condition. In seismic wave problems, the generalized Rie- 

mannian wave equation is used to model their propagation in domains with curved meshes 

which is suitable for zones with rugged topography. However, only a heuristic version of 

stability condition was reported in the literature for this equation. We derived an expres- 

sion for stability condition and numerical dispersion analysis for the Riemannian acoustic 

wave equation in a two-dimensional medium and analyzed its implications in terms of 

computational cost. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

One of the most important features when simulating wave propagation into the earth is to design stable, accurate and 

efficient numerical methods which represent the propagation phenomena and generate images of the earths interior which 

represent its constitution, geometry, and layers distribution. Some of the methods that recently have been used to simulate 

acoustic wave propagation in different scenarios and with several boundary conditions are [8] where the boundary element 

method is used to solve 3D acoustic scattering; [13] used a hybrid methodology combining the finite element method and 

the wave based method to maximize the advantages and compensate the drawbacks of both numerical methods; [3] devel- 

oped the singular boundary method for wave propagation analysis to eliminate singularities of the fundamental solutions 

and numerical evaluation of the singular integrals in the boundary element method. Nevertheless, the most straightforward 

method is the finite-difference time-domain (FDTD) approximation of the solution of the wave equation simulated on rect- 

angular meshes. This method faces some difficulties to properly model the earth since the geological structures of the earth 

are described by rectangular meshes but the data acquisition can be made on irregular surfaces or rugged topography and 

this important aspect is not considered usually into the FDTD method. 
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Fig. 1. The transformation of coordinates given by equations φ allows to go from (a) to (b). 

One way to include the topography of the acquisition surface is to perform a conformal transformation from a domain 

with a curved upper surface to a rectangular Cartesian grid. The strategy of conformally transform the grids has been de- 

veloped by many authors in curvilinear coordinates, for instance see [1,7,17] , for the elastic wave equation and [18] for the 

acoustic wave equation. In these works the wave equation is transformed (a smooth coordinate transformation) to be im- 

plemented in a cartesian grid which conforms with a curved irregular grid, an orthogonality condition is possed and then 

some terms with mixed partial derivatives of the wavefield vanish, and the result is a wave equation with a transformed 

Laplacian operator. A FDTD scheme is used, and a stability condition is derived by Fourier analysis of the components of 

the wavefield. [1] , established a second order stable finite difference scheme for the elastic wave equation in a curvilinear 

system, showing that the spatial operators in the method are self-adjoint for free-surface, nevertheless, the authors do not 

present a stability criteria. Recently in [20] , the Von-Neumann method was applied for stability and numerical dispersion 

for a FD scheme for the diffusive-viscous wave equation, in that work the results obtained were compared with stability 

condition for the acoustic case and revealed that the stability condition is more restrictive for the diffusive-viscous case on 

which a smaller time step is required but numerical dispersion is also smaller than that in the acoustic case. 

Nevertheless this approaches are dependent of the Euclidean structure to describe distances, angles between rays, over- 

turning rays, the symmetries that the continuum may posses, among other issues. To properly describe the continuum in 

terms of its material symmetries and the tensor operators that are naturally defined on it, it is necessary to provide a gen- 

eral geometrical structure on which the propagation can be described in a general way. Riemannian geometry is one of the 

general structures which allows us to formally describe an elastic boby and to obtain the equations of motion after a defor- 

mation, see [9,12] proposed a Riemannian wave equation, as a pure eigenvalue equation by considering the Laplace–Beltrami 

operator acting on a pressure field. [16] included the topography geometry in the acoustic Riemannian wave equation and, 

[15] developed a FD scheme with conformal transformations of the domains. In this work, a stability condition is derived in 

a heuristic way taking as the starting point the CFL stability condition and transforming it by means of the chain rule. For- 

mally, this is not a stability condition since it is not including the area and distances transformations, which are geometrical 

aspects intrinsically included in the metric tensor defined in a Riemannian manifold, and the time sampling resulting from 

this analysis to ensure stability of the FDTD scheme is quite far of being optimal. 

Our aim is to apply the Von-Neumann method to obtain a stability criteria for a second order and fourth order FD 

scheme of the 2D Riemannian acoustic wave equation and compare it with the heuristic one used by Shragge (2014). For 

numerical comparison, we also perform a wave propagation using two different topography profiles: a Gaussian 2D profile 

and the Canadian Foothills profile, ( [5] ), a synthetic velocity model representing a zone in the British Columbia (Canada) 

that shows several geological complexities common in that region. This velocity model allows us to show the dependence 

of the stability criteria on the smoothness of the profile. Finally we analyze the numerical dispersion for the generalized 

wave equation and compare it with the Cartesian acoustic wave equation. 

2. 2D Riemannian wave equation 

In this section we make a review of the formulation of the Riemannian wave equation which agrees with the wave 

equations used by [12,14,15] . For a basic study on Riemannian manifolds the reader is referred to [10] and for the elastic 

formulation on Riemannian manifolds see [9] . 

Let x = [ x 1 , x 2 ] 
T be coordinates of a curved physical domain on which we want to solve the wave equation ( Fig. 1 b) and, 

ξ = [ ξ1 , ξ2 ] 
T a rectangular (regular) computational domain on which we actually compute the acoustic wavefield ( Fig. 1 a). 

Consider a function x = φ( ξ) that maps the computational domain onto the physical domain and the constant-density 
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