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A B S T R A C T

Soil organic carbon (SOC) in agricultural soils is vital for soil fertility for sustainable agricultural production and
climate change resilience. Process-based farming system models are widely used to predict SOC dynamics in
agricultural soils, but their application at regional scales is largely limited by computational requirements, data
availability, and uncertainties in model predictions. Here we present an approach of combining a farming system
model and a simplified surrogate model that emulates and mimics the behaviour of complex process-based
models to predict SOC change (ΔSOC) and its uncertainty in Australian dryland cropping regions under an-
ticipated climate change. We first calibrated and validated the farming system model APSIM for simulating ΔSOC
(0–30 cm soil) using data from 90 farming-system trials at 28 sites across the study regions. Next we conducted a
comprehensive simulation across the region using the validated APSIM model to predict ΔSOC over the period
2009–2070. Then simple surrogate models were developed based on the APSIM outputs. The surrogate models
were able to explain> 96% of the variation in APSIM-predicted ΔSOC. Last the surrogate models were applied
across the regions at the resolution of 1 km. In our simulations, Australian dryland cropping soils under farmers'
common management practices and future climate conditions were a net carbon source (0.66Mg C ha−1 with
the 95% confidence interval ranging from −5.79 to 8.38Mg C ha−1) during the 62-year period. Across the
regions, simulated ΔSOC exhibited great spatial variability ranging from −108.8 to 9.89Mg C ha−1 at the re-
solution of 1 km, showing significant (P < 0.05) negative correlation with baseline SOC level, temperature and
rainfall, and positive correlation with pasture frequency (the duration of pasture in the rotation divided by the
whole duration of the rotation) and nitrogen application rate. The uncertainty in ΔSOC and the underlying
drivers were also assessed. This study presented a novel approach to efficiently predict future SOC dynamics and
their uncertainty at fine resolutions, facilitating the development of site-specific management strategies for soil
carbon sequestration.

1. Introduction

Conservation of soil organic carbon (SOC) in agricultural soils is
vital for sustainable agricultural production and mitigating climate
change (Bradford et al., 2016; Kahiluoto et al., 2014; Lal, 2004). SOC

usually declines after land use change to cropping (Sanderman et al.,
2017) until a lower steady state is reached. Synthesising global data
sets, Guo and Gifford (2002) estimated the decline in SOC to be in the
order of 42–59% when natural systems were converted to cropland.
Similarly, Luo et al. (2010) estimated that Australian cropping soils
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have lost 50–60% of the initial SOC stocks in top 30 cm that were
present before land clearing. However, detailed SOC dynamics in dif-
ferent regions depend on agricultural management practices, and vary
with soil and climate conditions. Conservation agriculture practices
such as stubble retention, no-tillage, organic amendments, avoidance of
long fallow periods, and increased crop rotation complexity (e.g., the
introduction of legumes and cover crops) have been recommended to
reduce SOC declines or to enhance carbon sequestration (Gan et al.,
2014; Luo et al., 2010; Smith, 2016; West and Post, 2002). More re-
cently, the international initiative “4 per 1000” aims at a yearly 4‰
increase of SOC in global agricultural soils to ensure food security and
mitigate climate change (Minasny et al., 2017). However, this ambi-
tious target has been challenged by the soil carbon research community
because of uncertainties surrounding carbon predictions across spatio-
temporal scales and resource requirements such as financial support for
farmers to change agricultural practices to sequester carbon (Baveye
et al., 2018; Vandenbygaart, 2018; White et al., 2018). It is vital to
elucidate SOC dynamics across space and time under various cropping
systems and management practices, particularly under climate change,
to enable a realistic assessment of the likelihood of being able to im-
prove SOC stocks (or minimise losses).

Numerous experimental studies have been conducted to assess the
response of SOC to various agricultural management practices, and it
has been widely accepted that practices that increase organic matter
input into the soil can reduce SOC losses or sequester more carbon
(Freibauer et al., 2004; Luo et al., 2010; West and Post, 2002). In ad-
dition, the quality of organic matter inputs, local climate and soil
conditions may regulate the trend of SOC change after adopting those
practices due to their effects on SOC losses via microbial decomposition
(Kong et al., 2005; Luo et al., 2017a). Nevertheless, manipulated field
experiments can only consider limited variations in crop rotations and
associated management practices such as residue removal and fertilizer
application, making it difficult to extrapolate experimental findings to
field conditions across a number of regions with different soils and
climate. In Australia's grain-cropping regions, for example, farmers'
choices of crop rotations and management practices depend on local
climate, soil and market conditions, resulting in diverse cropping sys-
tems. To account for> 99% of the cropped area in Australia, it has
been suggested that 22 crops should be included in the national carbon
accounting system (Unkovich et al., 2009). Considering the many
possible crop sequences and their varying impact on SOC, it is im-
practical, if not impossible, to use field experiments to investigate the
SOC dynamics influenced by this large number of crop species grown
under different rotations and management across regions that contain a
range of soils and climates. A modelling approach is best suited for such
purposes.

Agricultural system models with well-tested crop and soil modules
enable the investigation of the impact of alternative management sce-
narios, climate variability and future climate change on the pro-
ductivity of agricultural systems and SOC dynamics. A large number of
studies have used such strengths of agricultural system models to si-
mulate SOC dynamics under various conditions in terms of soil, climate
and agricultural management (Kucharik et al., 2001; Liu et al., 2009;
Luo et al., 2011; Qiu et al., 2009). In general, modelling results suggest
that carbon inputs are the predominant factor influencing the SOC
balance in agricultural soils (Wang et al., 2016; Zhao et al., 2013).
However, most modelling studies have focused on the verification of
models for simulating SOC dynamics under specific cropping systems
(including rotations) at the plot scale. When applying the model to
larger spatial scales, model predictions may suffer from large un-
certainties induced by model structure, parameter equifinality, and
limited data availability for model initialization/parameterization (Luo
et al., 2015; Ogle et al., 2010b; Saby et al., 2008). Thus, extending plot-
scale modelling to analyse SOC dynamics over space and time relies not
only on the availability of information required for the modelling, but
also on the capability of the models to simulate the growth of various

crops and their interaction with management practices, and SOC de-
composition processes across environments.

In this study, we combined the Agricultural Production Systems
sIMulator (APSIM) (Holzworth et al., 2014) and surrogate modelling to
predict future SOC dynamics over 62 years in Australian dryland
cropping regions. The APSIM model allows flexible specification of
management options such as crop and rotation type, tillage, residue
management, and fertilizer application, and has the capacity to simu-
late the interaction of crop growth and soil processes with soil, climate
and management practices. In the present study, the APSIM model was
first constrained for simulating SOC dynamics using observational data
sets collected from the major dryland cropping regions across Australia.
Then the constrained model was applied to simulate SOC dynamics
during the period 2009–2070 under farmers' current common man-
agement practices (i.e., business-as-usual) at 1869 sites across the study
region. The uncertainty in model predictions was also assessed. Based
on the APSIM simulation results, we developed surrogate models of the
APSIM model to predict the spatial pattern of SOC change across large
regions at fine resolution. Surrogate modelling derives simple re-
lationships driven by easily obtainable information to mimic results of
complex process-based models (Luo et al., 2013; Marie and Simioni,
2014). Surrogate models have the advantage of requiring much less
information than complex models like APSIM, facilitating the applica-
tion of the model across large spatial scales in terms of both lower
computational cost and data requirements. Specifically, the objectives
of the study were to: 1) predict SOC dynamics from 2009 to 2070 under
various management practices under future climate change conditions
using the constrained APSIM model; 2) quantify whether and how fu-
ture SOC changes correlate to local soil and climate conditions and
management practices; and 3) present and assess a surrogate modelling
approach to represent the complex APSIM model, and 4) implement the
surrogate model to assess the spatial pattern of SOC change in Aus-
tralia's cereal-growing regions at 1 km resolution.

2. Materials and methods

2.1. Study region and representative cropping systems

This study focuses on Australian rainfed cropping areas identified
from the map of Land Use of Australia 2010–11 at the resolution of
1× 1 km (Fig. 1). This cropping area includes a total of ~260,000 grid
cells (1× 1 km), accounts for ~3% of the total area of Australia, and is
spread across 23 different Agro-Ecological Regions (AERs) (Williams
et al., 2002) (Fig. 1), and cover a wide range of climatic and soil con-
ditions. Specifically, the annual average temperature across the region
ranges from 6.5 to 28.2 °C, precipitation from 124.7 to 4291.0 mm, and
SOC in the top 0.3m soil from 11.8 to 264.1Mg C ha−1. For each AER
with cropping, a crop rotation (Table S1) was derived based on data
from Australian Bureau of Statistics for the period from 2010 to 11 to
2014–15. Along with the crop rotations, the relevant fertilizer use and
crop residue management were calculated using the Yield and Nitrogen
Calculator (Baldock, 2012) and from the Australian crop and pasture
management database (Unkovich & Baldock 2017, unpublished data),
respectively. In brief, these crop rotations and the relevant management
represent current common agricultural management in each AER. The
details on compiling this information are provided in Supplementary
Material and Methods S1.

2.2. Soil and climate data

Soil data (0–2m) was obtained from the database of the Soil and
Landscape Grid of Australia (SLGA, http://www.clw.csiro.au/aclep/
soilandlandscapegrid/). The SLGA is derived based on digital soil
mapping methods and integrates historical soil data, new measure-
ments with spectroscopic sensors, and novel spatial modelling (Grundy
et al., 2015). The SLGA provides detailed soil attributes at the
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