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A B S T R A C T

The elastic modulus of nanowires can be measured by resonant frequency method, in which the elastic modulus
is determined using the classical theory of beam deflection. However, the measurement accuracy of the elastic
modulus obtained from the resonant frequency can be largely affected by theoretical models and boundary
conditions. In the present paper, a theoretical model is developed by considering nonlocal interactions and
boundary condition effects of cantilever support. Based on the proposed model, we investigate the influence of
nonlocal parameter and elastic foundation on the elastic modulus of carbon nanotubes (CNTs). The results show
that the resonant frequency of CNTs is affected by the clamped cantilever condition. Support stiffness and
clamped length of CNTS cannot be ignored in determining the elastic modulus of CNTs, especially for CNTs with
low stiffness support. After considering the boundary conditions, the influence of cantilever support on the
frequency is effectively removed, and the elastic modulus can be precisely determined by measuring the resonant
frequency.

1. Introduction

One-dimensional materials, such as carbon nanotube (CNTs), silicon
carbide nanowires have attracted intensive attention in recent years
due to their low dimensional and outstanding performances in many
applications [1–3]. As one of the most interesting nanomaterials, CNTs
have received significant interest because of their extraordinary me-
chanical and physical properties [4–6]. It is very important to precisely
characterize the mechanical properties of CNTs, in particular when
CNTs are designed for potential application of nano-electro-mechanical
systems (NEMS) [7–10]. The measuring the elastic modulus of CNTs
could rely on indirectly method such as thermal vibration amplitudes
by Poncharal et al. [11]. The elastic moduli of CNTs were determined
when resonantly excited at the fundamental frequency and high har-
monics. They studied static and dynamic mechanical deflections of
cantilevered CNTs by electrically induced method. The developed
method could measure both elastic modulus of CNTs and nano-masses
attached to the CNTs. Chen et al. [12] measured the mechanical re-
sonance of microscale quartz fibers to propose a method of obtaining
the elastic modulus of nanowires from their fundamental frequency. At
present, atomic force microscopy (AFM) is the most promising direct
method for analyzing the surface structure. A resonant contact AFM
technique was also developed and applied to quantitatively measure the

elastic modulus of polymer nanotubes [13,14]. The developments of
AFM provide a powerful means for vibrational characterization of
materials in the nanoscale. The results showed that the elastic modulus
of nanowires or CNTs can be determined by measuring the resonance
frequency. However, due to geometrical and clamping constraints, the
cantilever support stiffness of stretched CNTs influences directly the
measurement accuracy of the vibration frequency.

Since the elastic modulus of CNTs is indirect determined by mea-
suring the resonant frequency, the measurement error depends largely
on the corresponding relationship between the elastic modulus and the
resonant frequency of CNTs. Thus, it is very important to correctly and
effectively determine the elastic modulus dependence with frequency.
The mechanical vibrations of CNTs are of importance in various ap-
plications, such as nano-mass sensors, high frequency oscillators and
other nano-scale devices [15–19]. The vibration property of CNTs was
reported on several methods, such as molecular dynamics (MD) [20],
molecular mechanics model [21,22], finite element method (FEM)
[23,24], and continuum elastic theory [20,25–27]. Li and Chou [28]
proposed molecular structural mechanics model to evaluate the flexural
frequencies of single-walled CNTs (SWCNTs). In this approach, carbon
atoms were considered as concentrated masses placed in bond junc-
tions. Natsuki et al. [26,29] carried out the vibration analysis of
SWCNTs and double walled CNTs (DWCNTs), DWCNTs with different
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inner and outer nanotubes [30], and DWCNTs embedded in elastic
medium [31], based on the continuum elastic model. When CNTs were
embedded in polymer matrices, the effect of surrounding medium on
the vibrational property was described by Winkler springs model. An-
sari et al. [32–34] studied the oscillatory frequency of ellipsoidal and
spherical fullerenes, and carbon nanocones inside CNTs. The oscillatory
behavior was investigated based on the continuum approximation
along with Lennard- Jones potential energy between carbon molecules.

The essence of the nonlocal elasticity theory [35,36], differing from
the classical one in the stress-stain constitutive relations, is that the
stress at a reference point is a function of the strain field at every point
in the medium. Thus, the nonlocal continuum theory contains in-
formation about long range forces between atoms. At small length
scales, the lattice spacing between individual atoms for nanostructured
materials becomes more important and its effect can no longer be ig-
nored. The small-scale effect on the vibration frequency of CNTs has
been rarely considered in past work. Ece et al. [37] investigated the
nonlocal elasticity effect on the vibration of CNTs using the nonlocal
Timoshenko-beam theory. The results reported that the nonlocal effects
should be considered for higher modes of vibration. Wang and Waradan
[38] studied free vibrations of SWNTs and DWCNTs utilizing nonlocal
continuum mechanics. They showed that there was good consistency
between the results obtained by the nonlocal model and the experi-
mental data. Based on the Eringen's nonlocal elasticity theory, a large
amplitude vibration of CNTs was investigated under different supported
with axially immovable ends [39].

Although the resonance frequency of CNTs was carried out based on
different theories, the effect of the cantilever support on the vibration
property has not been investigated systematically so far. In the case of
partly clamed CNTs, the rigid support cannot correctly describe a state
of clamped CNTs [40,41]. This means that the vibration response is
different from the existing theoretical model and results because of
different boundary conditions. In the paper, an improved mechanics
model and theoretical approach were first established to investigate the
boundary condition effects on the resonant frequency. The analytical
method can be adopted to evaluate the measurement accuracy of the
elastic modulus of CNTs by measuring indirectly the resonant fre-
quency. The proposed continuum approach is valid, and able to easily
obtain the exact solution of governing difference equations.

2. Theoretical approaches

2.1. Governing equations

In the analysis model, a CNT was considered as a beam on partly
elastic supports. As shown in Fig. 1, the CNT beam was of the length L
and diameter D, in which L1 and L2 were the clamped and exposed
lengths of the CNT beam, respectively. The interaction force (pw) be-
tween the CNT and elastic foundation can be described as a Whitney-
Riley model characterized by a spring constant (kw) relative to the
stiffness of elastic medium. It is known that nonlocal elasticity theory
has been found to successfully describe mechanical behaviors of nano-
materials. In the classical elasticity theory, the stress tensor depends
linearly on the strain tensor at a given position, which cannot predict
the nonlocal effects. The essence of nonlocal elasticity theory is that the
stress field at a reference position depends not only on strain at that
position but also on strains at all other points in the domain. The scale
effects are accounted in this theory by considering internal size as
material parameters. Thus, the nonlocal elastic theory can present the
more reliable simulation. According to the nonlocal Euler-Bernoulli
beam model [42], the governing differential equation for the transverse
vibrations of CNTs is given by
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where x and t are the axial coordinate and time, respectively. w x t( , ) is
the deflection of CNT beam, in which w1 is the clamping part, and w2 is
the exposed part of nanotube length. E is the elastic modulus, I is the
moment of inertia and ρ is the mass density. e a0 is the nonlocal para-
meter, including that e0 is appropriate to the material, and a is the
characteristic internal length of a CeC bond (0.142 nm). pw is the dis-
tributed transverse pressure due to clamping force acting on the CNT.
The nonlocal parameter of CNTs is generally taken in the range of
0–2 nm [43]. The interaction force between the CNT and the clamping
support can be described as a Whitney-Riley model characterized by a
stiffness constant kw relative to the stiffness of elastic foundation ma-
terials, given as

= −p k ww w 1 (3)

2.2. Solution of the governing equations

We consider harmonic vibration of CNTs with angular frequency ω,
and =W x j( ), 1, 2j are the vibration amplitudes of displacement.
Thus, the vibrational solution of the differential equations given in Eqs.
(1) and (2) can be expressed

= =−w W x e j( ) , 1, 2j j
iωt (4)

where ω is the vibration frequency of CNT beam.
Substituting Eqs. (3) and (4) into Eqs. (1) and (2), the following two

forms of equations can be deduced
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General solutions of differential equations Eqs. (5) and (6) can be
given as follows:
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where

Fig. 1. Schematic illustration of clamped CNT beam embedded in an elastic
foundation.
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