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A B S T R A C T

Simulation methods, particularly those implemented in commercially available software, for the prediction of
flow and fiber orientation in polymer composites molding processes typically neglect the coupling between flow
and orientation which presents as anisotropic viscosity due to reinforcing fibers. While several particular so-
lutions have been performed for simple geometries, the application of tensor based anisotropic constitutive
behavior presents solution difficulties; thus, any potential consequences of neglecting coupling have been ac-
cepted in favor of developing and implementing additional complexity to the orientation evolution models.
Here, a simple model is presented by which flow and orientation analysis can be coupled through a scalar
viscosity function such that minimal adjustment to existing solvers is required for implementation.

1. Introduction

Understanding the final microstructure of parts produced through
molding of fiber reinforced polymers is critical to understanding the
resulting part performance [1]. In particular, injection moldings tend to
display the so-called shell-core orientation structure in which the ma-
terial near boundaries has experienced large shear, orientating fibers
nearly in the flow direction, while material near the midplane experi-
ences cross flow, producing an orientation state perpendicular to the
flow direction [2,3]. The relative width of the core region then plays a
critical role in the resulting part performance. It has been observed in
long fiber thermoplastics that the core width is significantly increased
as compared to short fiber thermoplastics [4,5]. Typically, modeling
efforts to account for this observed increase in core width assume the
flow field determined using orientation state independent, isotropic
viscosity is correct and, thus, modify the expressions for orientation
state evolution [6–8]. However, the problem of large core width has
recently been addressed through the use of an isotropic yield stress in
the viscosity definition [9] with the origin of the yield stress having
been shown to be a result of inter-fiber or inter-bundle friction [10,11].
This investigation challenges the assumption that flow fields have been
calculated correctly using unmodified, as compared to neat fluid,
viscosity models, though parameters may have been adjusted.

In a similar fashion to orientation state affecting the performance of
final parts, the evolving microstructure in flow processes is known to affect

rheological properties [12–14] through anisotropic viscosity. In compres-
sion molding of glass mat thermoplastic (GMT), the investigations of
Ericsson et al. [15] and Dweib and O’Brádaigh [16] both observe the
development of elliptical flow fronts from initially circular disks due to
initially anisotropic orientation states. Ericsson et al. [15] develop a simple
model by which the ratio of in-plane extension rates can be determined,
while Dweib and O’Brádaigh [16] show that the anisotropic nature of the
GMT must be modeled to compare with experimental closure forces.

In this work, the authors propose that both effects, namely increased
core width in long fiber thermoplastics and flow primarily transverse to
the direction of largest alignment, are inherently coupled to the ani-
sotropic nature of the suspension. However, contrasting prior in-
vestigations into the effect of coupling anisotropic viscosity and flow
[17,18] which have suffered numerical difficulty when considering
highly anisotropic fluids, a semi-phenomenological approach is taken to
determine an appropriate method of coupling an isotropic viscosity
model with the orientation state and deformation mode rooted in the
established rheological models. Costa et al. [19] have previously de-
monstrated such a model through a proof-of-concept viscosity defini-
tion that is dependent on orientation state only, though the model was
not based in established rheology. Maintaining an isotropic form of the
constitutive behavior provides a necessarily simplification for numer-
ical investigations. To this end, the development of a scalar viscosity
model for suspensions that is a function of both the orientation state
and deformation is presented. Additionally, a method by which the
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non-linearity of the matrix fluid may be coupled to the orientation state
and deformation mode is investigated. These models have been im-
plemented in a research version of the commercial software Moldex3D
and have been applied to the problems of a compression molding
center-gated disk and an injection molding center-gate disk.

2. Theoretical background

2.1. Orientation state representation & evolution

A single fiber is typically considered a cylindrical rod or a prolate
spheroid. The orientation of a fiber is then completely described by a
unit vector along the long axis of the fiber, = pp i. An orientation dis-
tribution function, p( ), can be used to describe a large number of a
fibers in a given volume [20]. However, for tractability in numerical
solutions, Advani and Tucker [21] introduced the use of the second
order orientation tensor:

= = =A p p p pA p p( ) dij i j i j (1)

as the primary descriptor of orientation state. The second-order
orientation tensor has all positive eigenvalues and trace of unity. Thus,
A represents only five independent variables. A collimated orientation
state is represented by the largest eigenvalue of A being equal to unity
(i.e. all fibers are perfectly aligned along a particular direction), and a
3D isotropic orientation state is represented by . The fourth order or-
ientation tensor is similarly defined as

= = =p p p p p p p pp p( ) dijkl i j k l i j k l (2)

While the cannot be uniquely defined in terms of A, the eigen-
value based orthotropic fitted closure (EBOF) of Cintra and Tucker [22]
or the invariant based orthotropic fitted closure (IBOF) of Chung and
Kwon [23] are typically used to approximate in terms of A based on
typical flow fields and a 3D isotropic initial conditions. Herein, the
IBOF-5 closure presented in the Appendix of Ref. [23] by Chung and
Kwon is used for all numerical calculations. Jack and Smith [24] have
investigated the error associated with closure approximations and
found the IBOF-5 to be near the lowest possible error for a fourth order
closure approximation as compared to orientation distribution based
calculations over a wide range of flow types.

Orientation evolution in response to deformation is based in
Jeffery’s hydrodynamic (HD) equation for prolate spheroids [12,13]
followed by the addition of interaction behavior through rotary diffu-
sion (DIFF) [6,7,20,25–27] and reduced orientation kinetics (ROK)
[6,8,28]. Thus, the material derivative of A is expressed as a super-
position of effects as

= + +A A A AHD DIFF ROK (3)

The first term, being a result of Jeffery hydrodynamics, is

= + +A W A A W D A A D D( 2 : )HD (4)

where = = =L L u u u/ij i j is the velocity gradient tensor,
=W L L( )/2T is the vorticity tensor, = +D L L( )/2T is the rate of de-

formation (or strain rate) tensor, and is a shape factor dependent on
fiber aspect ratio typically set to unity. Extending the work of Folgar
and Tucker [20], Phelps and Tucker [25] give a form for ADIFF as

= +A D D A D A A D D[2 2tr( ) 5( 2 : )]r r r r r
DIFF (5)

where = D D2 : is the strain rate magnitude of the suspension and
Dr is a second order spatial tensor. The Folgar-Tucker model is re-
covered when = CD Ir I where CI is the interaction coefficient. Phelps
and Tucker give Dr for anisotropic rotary diffusion (ARD) in their model
as

= + + + +b b b b bD I A A d dr 1 2 3
2

4 5
2 (6)

where b1-b5 are treated as constant coefficients and =d D/ is a

normalized rate-of-deformation tensor. As d is the rate-of-deformation
tensor with the strain rate divided out, it encodes only the principal
axes and relative magnitudes of the principal deformations. Thus, we
defined d as the deformation mode. In this way, the ARD model de-
pends upon deformation mode and orientation state. Tseng et al. [7]
give Dr for the iARD model as

= C CD I d( 4 )r I M
2 (7)

depending on upon deformation mode where CI and CM are typically
treated as constant parameters, though recent modeling efforts have
utilized strain rate dependence [28]. Similarly, Tseng et al. have de-
veloped the pARD model depending only upon orientation state [26].
Finally, the diffusion model of Koch bears relevance to the topic of this
work [27]. Koch gives a form for Dr as

= +k kD d d I d d( : : ) ( : : )r 1 2 A (8)

whereA is the sixth-order orientation tensor with similar definition
to the second- and fourth-order orientation tensors. While appropriate
closure models exist [29–33], the Koch model introduces the difficulty
and computational expense of approximating A while providing lim-
ited benefits compared to the Folgar-Tucker model [25]. Specifically,
when =k 02 , the Koch model reduces to an isotropic diffusion similar to
the Folgar-Tucker model but with orientation state and deformation
mode dependent magnitude through the kernel d d( : : ). This kernel
describes the degree to which stretching is along fiber axes. When
stretching along fiber axes, the Koch model would predict stronger
diffusion than when stretching is dominantly transverse to fiber axes.
Next, to account for the discrepancy between orientation evolution
rates in experimental observations and models, Wang et al. [8] have
developed the reduced strain closure (RSC) model while Tseng et al. [6]
have developed the retarding principal rate (RPR) model. The RPR
model has the form

=A R RROK T (9)

where R is the rotation matrix associated with the eigendecomposition
of A, is the similarly ordered, diagonal, eigenvalue rate of change
matrix as calculated by previous effects, and is a modeling parameter.
In this way, the RPR is always applied as the final orientation evolution
term. The RSC and RPR models are equivalent provided the term in
the RSC model is set equal to 1 . Again, is generally treated as
constant but has recently been utilized with strain rate dependence
[28].

2.2. Fluid dynamics

In molding simulations under the assumption of creeping flow, the
governing equations of the fluid mechanics which describe the transient
flow motions are given as [34]:

+ =

+ =
= + +P

u

u uu g
I u u

0

( ) ( )
( )

t

t
T (10)

where is the density, t is the time, is the total stress tensor, g is the
gravitational acceleration vector, P is the pressure, and is the iso-
tropic viscosity. Typically, the isotropic viscosity is measured for a
particular flow case; therefore, it is a measure of an effective viscosity of
the suspension in that particular flow case. This is a deficiency of un-
coupled approaches addressed in this work. The 3D finite volume
method (3D-FVM) technique is adopted in Moldex3D to solve the
governing equations efficiently and robustly for complex geometries.
Specific details on the 3D-FVM are available in Ref. [35].

2.3. Anisotropic viscosity models

In the following, the notation of Beaussart et al. [36] that has direct
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