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A B S T R A C T

Trusses with geometric and loading symmetries have been used in many structures to reduce the complexity of
the design. Slight asymmetries in geometry and in loading could lead to bifurcation in the structural response.
Failure of such structures still occur occasionally causing major damage to the property and to the human lives.
A fully nonlinear structural analysis is expected to detect such symmetry breaking bifurcations. In this paper, we
conducted the bifurcation analysis of a two-bar truss and a shallow arch structure with seven bars. Two program
packages Gesa and Ansys based on finite elements method have been used to detect the symmetry breaking
bifurcation points. However, unlike typical bifurcation analysis packages they cannot detect the bifurcation point
without inserting a small perturbation in the initial geometry or the loading of the structure. Such a bifurcation
can be easily missed in finite element-based analysis. The theoretical analysis reveals that the bifurcation leads
to a much lower critical load in the presence of small asymmetry compared to the symmetric case. The results are
verified by using Gesa program in Matlab for fully nonlinear analysis and with results by using Ansys commercial
program. The two structural examples serve to illustrate the limitations of widely used finite element analysis
packages for nonlinear bifurcation analysis.

1. Introduction

A structure’s response under static load is often described by the load
deflection curve. Each point in the curve corresponds to an equilibrium
state in the equilibrium path. A bifurcation point is the point on the
load deflection curve which has two or more directions to go when the
load varies [1], and it is one of the critical points in the equilibrium
path when the system changes from being stable to unstable [2].
Instability resulting from bifurcations is an important failure mode in
many thin walled or skeletal structures. A structure is said to have
snapped when the equilibrium path emerging from unloaded state to
a loaded state loses its stability and reaches to another more stable
point. Eventually, the structure reaches a new stable configuration [3].
A primary stable equilibrium path rising with load parameter cannot
become unstable unless it intersects with another secondary path at
a bifurcation point [4]. However, the system may lose stability at a
limit point bifurcation. It can be said that the system will snap towards
a far stable equilibrium position and the structure buckles once it
reaches the bifurcation point at the maximum loading. The snap-through
nonlinear deformation of an inflated balloon and its growth involving
both primary and bifurcated branches have been explored and studied
numerically using finite element method [5].
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The main reason for system instability is system nonlinearity. The
nonlinearity sources in solid mechanics are: force nonlinearity, kine-
matic nonlinearity, material nonlinearity, and geometrical nonlinearity.
The bifurcation point was detected by using a geometrically nonlinear
analysis [6,7]. The geometrical nonlinearity behavior is often seen
in slender structures such as arches, trusses and membranes [8,9,5].
Researchers have suggested using a truss to learn about the nonlinear
geometric behavior [10]. Slenderness and shallowness ratios are two
parameters that are important in the interaction between snap-through
and Eulerian instability. The shallowness ratio is the height to length
ratio which may also be quantified by the initial angle of the arch [9].
The slenderness ratio is the ratio between the length of a structural
element and the thickness of the element. Multiple-short truss elements
are used in the nonlinear analysis procedure to model the bent effects
of long cables [11]. Different methods to predict and solve the problem
of bifurcation analysis of a structure have been used and presented
in the literature. The analytical solution is very important to clarify
the fundamentals of nonlinear behavior. Such a solution is used in
the current study with a Von Mises truss which is a simple truss
with two pinned bars [12]. A few analytical solutions are offered for
severe geometrically nonlinear behaviors [13,14]. Many researchers
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have used simple structures in their studies to explain the basic concepts
of stability behavior [15]. A simple example of two-bar planar truss
has been analyzed to illuminate the snap-through and the bifurcation
behavior of the structures [16]. Simple pinned–pinned beam (initially
flat), formulated based on classical Euler–Bernoulli theory has been
used to study the relation between Euler buckling and the instability
phenomena [17].

Finite element methods with the assumption of the geometrical
nonlinearity have been used to solve stability problem of Von Mises
truss [18]. Some structures show highly geometrically nonlinear re-
sponses that exhibit complex snap-back behavior. These responses can
be modeled using the finite element approach with employment of the
arc-length method to analyze the nonlinear equilibrium path through
limit points for three-dimensional space trusses [19]. Integral equation
method with conjugate arc method can follow the nonlinear equilibrium
path in shallow arches and overcoming bifurcation and limit points [20].
Some structures can exhibit snap-through buckling behavior under
lateral loading. This behavior is reveled in curved structures, such as
panels, beams and arches [21].

The snap-through and snap-back phenomena are very common and
dominant in highly flexible truss structures. They eventually lead to
large deformation in the truss structures [1]. The field of deployable
structures has many potential applications in space for their advantages
of small volume that can be occupied and its highly nonlinear geometry
which depends on snap-through instability type behavior of the struc-
ture [22,23].

It was noted from literature that the instabilities are associated with
limit and bifurcation points. A structure can lose the stability before
reaching the theoretical ultimate load. The judgment of stability can
be evaluated by finding the determinant of the stiffness matrix for
the system extracted from first order derivative of potential energy.
The instability takes place when the determinant of the matrix is
negative [24]. The concept of catastrophe theory has been utilized
to find the cusp point singularity using third order derivative of the
potential energy function [25]. In many practical cases, instability can
be detected by checking two or more eigenmodes at coincident or nearly
coincident critical loads. This coupled instability might give rise to
severe imperfection sensitivity [26]. An instability phenomenon can be
avoided through special design modification; however, in recent studies,
researchers have been attempting to transform the negative effect to
the positive one, as a beneficial behavior to be used in the design of
smart devices. Based on the changes in the shape of the structure con-
cept, buckling is induced in micro-electromechanical systems (MEMS)
devices [27]. Many MEMS devices have been manufactured with low
production cost and with advanced and integrated circuit technologies
relying on the benefits of the buckling [28].

In this study, the structural material is assumed to be linear-
elastic [29] and only geometrical nonlinearity is considered. In a prior
study, geometrical imperfection was introduced for the Von Mises arch
as a deviation in midspan of each beam from the line axis in two pat-
terns. The first used symmetric imperfection where the deviation applied
downward in each beam. The second reverses direction for the adjacent
beams as an asymmetric imperfection [30]. However, in our study, small
load and displacement perturbation in the initial conditions are used as
asymmetric perturbation. In our study, asymmetric perturbation is used
to detect the bifurcation. We carried out the bifurcation analysis of two
structures. Due to the simplicity of these structures, stability criteria
can be obtained analytically. Under asymmetry perturbations, a much
lower critical load was found for each structure. Using the same two
structures, we then demonstrate the use of two packages based on finite
element methods for the bifurcation analysis. Although the same critical
loads are obtained, the analysis using FEM is more suitable for complex
structures. However, care must be taken when using these packages;
the computer programs may fail to detect some bifurcations unless an
asymmetric perturbation, such as the loading or in the geometry, is
inserted. The newly detected bifurcations of the two truss structures are

Fig. 1. Symmetric truss supporting load.

important since the critical loads at these bifurcations are much lower
than the ultimate load corresponding to the limit point of an arch. We
have presented parametric study for a truss with different initial angles.
The detected bifurcations may also provide designers novel options
when utilizing nonlinear structural responses in devices.

2. Symmetry breaking bifurcation of a Von Mises arch

Two assumptions are considered throughout our analysis. First, the
Von Mises arch is linearly elastic; geometric nonlinearity refers to
large nodal displacement and moderate axial strains (<0.05). Second,
high Euler buckling is assumed to neglect the possibility of buckling
instability [25,31]. On the assumption of moderate strain, we found
that the difference between Cauchy strain and Green strain is (0.027%),
which is insignificant. Fig. 1 shows an arch, traditionally named Von
Mises arch, with two elastic hinged members under a compressive load.
We include the elastic deformation in the equilibrium equation and treat
the two compressive members as springs with spring constant 𝑘 = 𝐸𝐴

𝐿 ,
where 𝐸,𝐴 and 𝐿 are the Young’s modulus, the cross sectional area, and
the unloaded length of each compressive member, respectively.

2.1. Snap-through bifurcation and the ultimate load limit of the symmetric
structure

Let 𝛥 denote the downward displacement of the top node, 𝛼0 the
initial angle, and 𝛼 the angle after deformation. Fig. 1 with trigonometric
relationships leads to the followings:

sin 𝛼 = (𝐿 sin 𝛼0 − 𝛥)∕𝑙 (1)
𝐿 cos 𝛼0 = 𝑙 cos 𝛼 (2)

The force 𝑃 is calculated using the force in the truss based on:

𝑃
𝑠𝑖𝑛𝛼

= 2𝑘(𝐿 − 𝑙) (3)

Substituting (2) into (3), we have

𝑃
𝑘𝐿

= 2 sin 𝛼
(

1 −
cos 𝛼0
cos 𝛼

)

(4)

𝑠𝑖𝑛𝛼 =
𝐿𝑠𝑖𝑛𝛼0 − 𝛥

√

(𝐿𝑐𝑜𝑠𝛼0)2 + (𝐿𝑠𝑖𝑛𝛼0 − 𝛥)2
,

cos 𝛼 =
𝐿𝑐𝑜𝑠𝛼0

√

(𝐿𝑐𝑜𝑠𝛼0)2 + (𝐿𝑠𝑖𝑛𝛼0 − 𝛥)2

(5)

Substituting (5) into (4), we get

𝑃
𝑘𝐿

= 2[(𝐿𝑠𝑖𝑛𝛼0 − 𝛥)(𝐿2 − 2𝛥𝐿𝑠𝑖𝑛𝛼0 + 𝛥2)−
1
2 −

𝐿𝑠𝑖𝑛𝛼0 − 𝛥
𝐿

] (6)

This can be written in the following dimensionless form:

𝑃
𝑘𝐿

= 2(sin 𝛼0 −
𝛥
𝐿
)
[

(1 − 2 𝛥
𝐿

sin 𝛼0 + ( 𝛥
𝐿
)2)−1∕2 − 1

]

(7)

The relationship between dimensionless load (𝑃∕𝑘𝐿) and the di-
mensionless displacement (𝛥∕𝐿) is nonlinear as seen from Eq. (7) and
it is shown in Fig. 2 for 𝛼0 = 20◦ and 𝛼0 = 15◦. Both curves snap-
through at the critical points (limit points) to another stable path. Larger
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