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For stretch-dominated cellular structures with arbitrarily oriented cell walls made from a homogeneous isotropic
hyperelastic material, recently, continuum isotropic hyperelastic models were constructed analytically, at a
mesoscopic level, from the microstructural architecture and the material properties at the cell level. Here,
the nonlinear elastic properties of these models for structures with neo-Hookean cell components are derived
explicitly from the strain-energy function and the finite deformation of the cell walls. First, the nonlinear shear
modulus is calculated under simple shear superposed on finite uniaxial stretch. Then, the nonlinear Poisson’s
ratio is computed under uniaxial stretch and the nonlinear stretch modulus is obtained from a universal relation
involving the shear modulus as well. The role of the nonlinear shear and stretch moduli is to quantify stiffening
or softening in a material under increasing loads. Volume changes are quantified by the nonlinear bulk modulus
under hydrostatic pressure. Numerical examples are presented to illustrate the behaviour of the nonlinear elastic
parameters under large strains.

1. Introduction

Solid cellular structures are widespread in nature and in an ever
increasing number of biomedical and engineering applications [1-9].
For example, engineered tissue scaffolds provide an environment for
growth and regeneration of biological cells [10-19], while natural ma-
terials generally incorporate several levels of structural hierarchy, which
contribute to their macroscopic physical properties [20-24]. From the
modelling point of view, a sub-level in the structural hierarchy can be
treated either as a substructure with its own geometry, or as a continuum
described by a suitable material model. Advancements in manufacturing
techniques is also enabling the creation of new types of materials
with several nested hierarchical levels [25,26,24,27]. Such structures
promise to explore uncharted territory in materials research [21,4,23],
while the recursive nature of their hierarchies brings up questions about
self-similar and fractal behaviours [28,25,29,30,22].

When studying cellular structures, the common assumption is that
cell walls are linearly elastic with a geometrically nonlinear behaviour.
In this case, if the cell walls bend, then the elastic response can
be determined from the linear-elastic deflection of a beam [4,5].
However, in many cellular structures, when loaded, the cell walls
stretch axially rather than bend. The dominant mechanical behaviour
is determined by the architecture and depends on whether the cells
are open or closed [31,23]. Stretch-dominated cellular structures, such
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as octet-truss and body-centred cubic geometries, for example (see
Fig. 1), have a higher stiffness-to-weight ratio than bending-dominated
ones [31,32,26,21,5,33,34,23]. In addition, biological and bio-inspired
materials are often nonlinearly elastic under large strains, and a finite
elasticity approach is needed to understand them [35-37].
Microstructure-based models for a cellular solid with open cells of
isotropic linearly-elastic material were first proposed by Gent & Thomas
(1959) [38], where infinitesimal stretches were assumed. In [39], these
models were extended to structures with closed cells containing an ideal
gas. For these models, effective Young’s modulus and Poisson’s ratio
under infinitesimal deformations were derived explicitly from the con-
stitutive equations [40,41]. For cellular structures of nonlinearly elastic
material under finite strain deformations, a phenomenological contin-
uum model was proposed by Blatz & Ko (1962) [42]. This model reduces
to the Gent-Thomas model in the small strain limit [43,44]. Later, it
was noted in [45] that Hill’s energy functional of hyperelasticity [46]
can be used to describe the simple special case of structures where
the principal stresses are uncoupled, i.e. depend only on the stretch
ratio in the corresponding principal direction. These approaches are
based on Ogden-type strain-energy functions for compressible materials
extending the incompressible strain-energy functions defined in [47].
For stretch-dominated structures with open or closed cells made
from nonlinear elastic materials, in [48,49], novel continuum isotropic
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Fig. 1. Examples of stretch-dominated cellular structures: (A) octet-truss and (B) body-centred cubic, at the cell level (left) and at the mesoscopic structural level

(right), respectively.

hyperelastic models, at a mesoscopic level, where the number of cells
was finite and the size of the structure was comparable to the size of the
cells, were constructed analytically from the structural architecture and
the material properties at the cell level. For these structures, the cell
walls, which were equal in size and arbitrarily oriented, were under
finite triaxial deformations, while the joints between adjacent walls
were not elastically deformed. The elastic responses at different scales
were related by the assumption that, when the structure is subject
to a triaxial stretch, each cell wall deforms also by a triaxial stretch,
without bending or buckling, and the stretches of the structure and of
the cell walls were related by a rotation. Possible instability effects due
to cell wall buckling, for example, which could also occur under large
deformations, were discussed in [48].

In this paper, we extend the theoretical investigation of the hy-
perelastic models for structures with neo-Hookean cell components
introduced in [48,49], by providing explicit derivations of key nonlinear
elastic parameters under large strains, following the formal definition
of these parameters given in [50]. In this sense, our explicit multiscale
nonlinear elastic analysis and the corresponding numerical illustrations
presented here are new. First, the hyperelastic models are summarised
in Section 2. Then, for each model, in Section 3, the nonlinear shear
modulus is formulated explicitly under simple shear superposed on finite
uniaxial stretch. In Section 4, the nonlinear Poisson’s ratio is defined
under uniaxial stretch and the nonlinear stretch modulus is obtained
from a universal relation involving the shear modulus as well. The role
of the nonlinear shear and stretch moduli is to quantify stiffening or
softening in a material under increasing loads. Volume changes are
quantified by the nonlinear bulk modulus under hydrostatic pressure
in Section 5. The nonlinear elastic behaviour of the mesoscopic models
is illustrated numerically in Section 6 and the numerical results are
discussed in Section 7.

2. Hyperelastic models for stretch-dominated cellular structures

In this section, we summarise the general formulation of the contin-
uum hyperelastic models for stretch-dominated cellular structures with
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open or closed cells proposed in [48,49], and specialise these models to
structures with neo-Hookean cell components, which we then analyse
in detail in the next sections.

2.1. Geometric assumptions

In open-cell structures, the cell walls consist of the cell edges which
form an interconnected network, while in closed-cell structures, the cell
walls contain both the cell edges and the cell faces forming disconnected
cell compartments. For each structure, all the cell edges are equal and
thin, with undeformed thickness 7 and length L, such that 0 < k =
t/L < 1, and meet at joints of approximate thickness 7 (see Fig. 2, where
the joints were slightly enlarged, emphasising that they have non-zero
volume).

Open-cell structures. For the open-cell structure, we consider the case
where all the cell walls are circular cylinders and the joints are spheres
(see Fig. 2A) [48]. Taking the unit volume as the volume of the sphere
with radius R = (L +1)/2 = L(1 + k)/2, which is centred at a joint and
contains half of the length of each cell wall connected to that joint (see
Fig. 2B), the representative volume fraction of solid material contained
in the cell walls, included in this sphere, is
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2.1

Closed-cell structures. For the closed-cell structures, all the cell walls
have flat faces and adjacent cell walls meet along cell edges of length
L, while adjacent cell edges meet at spherical joints [49]. In this case,
setting the unit volume as the volume of a sphere with radius R =
(L+1)/2 = L(1 + k)/2, centred at a joint, the representative volume
fraction of solid material contained the cell walls (faces and edges)
included in this sphere, is equal to
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