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a b s t r a c t

This paper is concernedwith the problems of optimal control and stabilization for networked control sys-
tems (NCSs), where the remote controller and the local controller operate the linear plant simultaneously.
The main contributions are two-fold. Firstly, a necessary and sufficient condition for the finite horizon
optimal control problem is given in terms of the two Riccati equations. Secondly, it is shown that the
systemwithout the additive noise is stabilizable in the mean square sense if and only if the two algebraic
Riccati equations admit the unique solutions, and a sufficient condition is given for the boundedness in
themean square sense of the systemwith the additive noise. Numerical examples about unmanned aerial
vehicles model are shown to illustrate the effectiveness of the proposed algorithm.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Networked control systems (NCSs) are control systems con-
sisting of controllers, sensors and actuators which are spatially
distributed and coordinated via certain digital communication net-
works (Gao, Xu, & Zhang, 2017; Ju & Zhang, 2018; Zhang, Branicky,
& Phillips, 2001). Recently, NCSs have received considerable inter-
est due to their applications in different areas, such as automated
highway systems, unmanned aerial vehicles and manufacturing
systems (Horowitz & Varaiya, 2000; Seiler, 2001). Comparing with
the classical feedback control systems, NCSs have vast superiority
including low cost, reduced power requirements, simple mainte-
nance and high reliability. However, the packet dropout occurred
in the communication channels of NCSs brings in challenging
problems (Ahmadi, Salmasi, Noori Manzar, & Najafabadi, 2014).
Therefore, it is of great significance to study NCSs with unreliable
communication channels where the packet dropout happens.

The research on the packet dropout can be traced back to Ha-
didi and Schwartz (1979) and Nahi (1969). Sinopoli et al. (2004)
introduced the Kalman filter with intermittent observations and
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the optimal estimator is defined as x̂k|k = E[xk|{zk}, {γk}]with con-
ditioning on the arrival process {γk}. Qi and Zhang (2016) derived
the optimal estimator without conditioning on the arrival process
{γk} and obtained the optimal controller for the systems subject to
the state packet dropout. In Gupta, Hassibi, andMurray (2007), the
optimal linear quadratic Gaussian control for system involving the
packet dropout is studied by decomposing the problem into a stan-
dard LQR state-feedback controller design, along with an optimal
encoder–decoder design. The stabilization problem is investigated
in Xiong and Lam (2007) for NCSs with the packet dropout. For
systems subject to input delay and packet dropout, Liang, Xu,
and Zhang (2017) derived a sufficient and necessary condition for
the mean-square stabilization. Nevertheless, the aforementioned
literatures are merely involved in a single controller.

Inspired by the previous work (Ouyang, Asghari, and Nayyar
2016), the NCSs under consideration of this paper are depicted
as in Fig. 1, which is composed of a plant, a local controller, a
remote controller and an unreliable communication channel. The
state xk can be perfectly observed by the local controller. Then,
the state xk is sent to the remote controller via an unreliable
communication channel where the packet dropout occurs with
probability p. We define yk as the observed signal of the remote
controller. When the remote controller observes the signal yk, an
acknowledgment is sent from the remote controller to the local
controller whether the state is received. Hence, the local controller
can observe the signal yk as well. The two controllers will not
perform their control actions until they observe the signal yk. At
time k, information {y0, . . . , yk, uR

0, . . . , u
R
k−1} are available to the

remote controller uR
k , while the local controller uL

k uses information
{x0, . . . , xk, y0, . . . , yk, uR

0, . . . , u
R
k−1} tomake decision. Besides, the
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Fig. 1. Overview of NCSs with an unreliable communication channel.

channels from the controllers to the plant are assumed to be
perfect. The aim of the optimal control is tominimize the quadratic
performance cost of NCSs and stabilize the linear plant.

The NCSs model stems from increasing applications that ap-
peal for remote control of objects over Internet-type or wireless
networks where the communication channels are prone to failure.
For example, the local controller can be an integrated chip on
the unmanned aerial vehicle (UAV) that implements moderate
control and the remote controller can be a ground-control center
(GCC). When the UAV flies over a suspected area looking for hiding
ground-based enemies, it reports the current status to the remote
GCC viawireless communication channel. The remoteGCC receives
the mission states and issues the following-up commands to the
UAV (Shim, Kim, & Sastry, 2000). However, generally, the UAV is
poor in the transmission capability and the GCC is equipped with
complete communication installationwhich is capable of powerful
transmission. Thus, the downlink from the local controller to the
remote controller is prone to failure and the uplink from the
remote controller to the local controller is perfect.

Since the studied problem consists of one remote controller
and one local controller, it can be reviewed as two decision-maker
problem. In Xu, Shi, and Zhang (2018), the leader–follower game
is considered. Sheng, Zhang, and Gao (2014) and Xu, Zhang, and
Chai (2015) studied the Nash strategy and Stackelberg strategy
respectively. Note that for Nash equilibrium it is necessary for
each controller to access the optimal control strategies of each
other, and for Stackelberg strategy it is assumed that one player
is capable of announcing his strategy before the other. Therefore,
these approaches are unavailable to deal with this work. Due to
the asymmetric information for the remote controller and the
local controller, the analysis and synthesis for the optimal control
remain challenging. In Ouyang et al. (2016), the finite-horizon
optimal strategies were elegantly solved by using the dynamic
program based on the common information approach. Further-
more, Asghari, Ouyang, and Nayyar (2018) extended their work
to a networked control system consisting of a remote controller
and multiple local controllers. Note that the stabilization problem
has not yet been solved while it is the foundation problem of the
infinite horizon control.

Recently some significant progress for the optimal LQ control
has been made by proposing the approach of solving the forward
and backward differential/difference equations. See Zhang, Li, Xu,
and Fu (2015) and Zhang and Xu (2017) for details. Inspired by
these works, this paper studies the optimal control and stabiliza-
tion problems for the NCSs with remote and local controllers over
unreliable communication channel. The key technique is to apply
the Pontryagin’s maximum principle to develop a direct approach
based on the solution to the forward and backward stochastic dif-
ference equations (FBSDEs),whichwill lead to anon-homogeneous
relationship between the state estimation and the costate. The
main contributions of this paper are summarized as follows: (1) An
explicit solution to the FBSDEs is presented with the Pontryagin’s

maximum principle. Using this solution, a necessary and sufficient
condition for the finite horizon optimal control problem is given
in terms of the solutions to the two Riccati equations. (2) For the
stochastic systems without the additive noise, a necessary and
sufficient condition for stabilizing the systems in the mean-square
sense is developed. For the stochastic systems with the additive
noise, a sufficient condition is derived for the boundedness in the
mean-square sense of the systems.

The rest of the paper is organized as follows. The finite horizon
optimal control problem is studied in Section 2. In Section 3, the
infinite horizon optimal control and the stabilization problem are
solved. Numerical examples about the unmanned aerial vehicle
are given in Section 4. The conclusions are provided in Section 5.
Relevant proofs are detailed in Appendices.

Notation: Rn denotes the n-dimensional Euclidean space. I
presents the unit matrix of appropriate dimension. A′ denotes the
transpose of thematrixA.F(X) denotes theσ -algebra generated by
the random variable X . A ≥ 0(> 0) means that A is a positive semi-
definite (positive definite) matrix. Denote E as mathematical ex-
pectation operator. Tr(A) represents the trace of matrix A. I stands
for the unit matrix with appropriate dimension. diag(A1, . . . , An)
is a block diagonal matrix with main diagonal block matrices Aj,
j = 1, . . . , n and the off-diagonal blocks are zero matrices.

2. Finite horizon case

2.1. Problem formulation

Consider the discrete-time system with two controllers as
shown in Fig. 1. The corresponding plant is given by

xk+1 = Axk + BLuL
k + BRuR

k + ωk, (1)

where xk ∈ Rnx is the state, uL
k ∈ RnL is the local control, uR

k ∈ RnR is
the remote control, ωk is the input noise and A, BL, BR are constant
matrices with appropriate dimensions. The initial state x0 and ωk
are Gaussian and independent, with mean (x̄0, 0) and covariance
(P̄0,Qωk ) respectively.

As can be seen in Fig. 1, let ηk be an independent identically
distributed (i.i.d.) Bernoulli random variable describing the state
signal transmitted through the unreliable communication channel,
i.e., ηk = 1 denotes that the state packet has been successfully
delivered, and ηk = 0 signifies the dropout of the state packet.
Then,

ηk =

{
1, yk = xk, with probability 1 − p
0, yk = ∅, with probability p (2)

Observing Fig. 1, the remote control uR
k can obtain the sig-

nals {y0, . . . , yk}. Accordingly, we have that uR
k is F{y0, . . . , yk}-

measurable. The local control uL
k has access to the states

{x0, . . . , xk} and the signals {y0, . . . , yk}. In viewof (1),wehave that
uL
k is F{x0, ω0, . . . , ωk−1, y0, . . . , yk}-measurable. We denote F

{x0, ω0, . . . , ωk−1, y0, . . . , yk} and F{y0, . . . , yk} as Fk and F{Yk}

respectively.
The associated cost function for system (1) is given by

JN =E
{ N∑

k=0

[xk′Qxk + (uL
k)

′RLuL
k + (uR

k)
′RRuR

k]

+ xN+1
′PN+1xN+1

}
(3)

where Q , RL, RR and PN+1 are positive semi-definite matrices.
E takes the mathematical expectation over the random process
{ηk}, {ωk} and the random variable x0. Thus, the optimal control
strategies to be addressed are stated as follows:

Problem 1. Find the Fk-measurable uL
k and the F{Yk}-measurable

uR
k such that (3) is minimized, subject to (1).
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