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a b s t r a c t

Inspired by Switching Systems and Automata theory, we investigate how combinatorial analysis tech-
niques can be performed on a hybrid automaton in order to enhance its safety or invariance analysis.
We focus on the particular case of Constrained Switching Systems, that is, hybrid automata with linear
dynamics and no guards. We follow two opposite approaches, each with unique benefits: First, we
construct invariant sets via the ‘Reduced’ system, induced by a smaller graph which consists of the
essential nodes, called the unavoidable nodes. The computational amelioration of working with a smaller,
and in certain cases the minimum necessary number of nodes, is significant. Second, we exploit graph
liftings, in particular the Iterated Dynamics Lift (T -Lift) and the Path-Dependent Lift (P-Lift). For the former
case,we show that invariant sets can be computed in a fraction of the iterations compared to the non-lifted
case, while we show how the latter can be utilized to compute non-convex approximations of invariant
sets of a controlled complexity.

We also revisitwell studied problems, highlighting the potential benefits of the approach. In particular,
we apply our framework to (i) invariant sets computations for systems with dwell-time restrictions,
(ii) fast computations of the maximal invariant set for uncertain linear systems and (iii) non-convex
approximations of the minimal invariant set for arbitrary switching linear systems.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Discrete-time linear switching systems consist of a finite collec-
tion of dynamics, calledmodes,which are allowed to switch at each
time instant, according to a set of rules (see Eqs. (1)–(6) for a precise
description). They constitute a particularly interesting and impor-
tant family of hybrid systems Goebel, Sanfelice, & Teel (2012);
Jungers (2009); Liberzon (2003) and Shorten, Wirth, Mason,Wulff,
& King (2007). Apart from their simplicity, their ability to capture
particular hybrid phenomena (Dehghan & Ong, 2012b; Donkers,
Heemels, van den Wouw, & Hetel, 2011; Hernandez-Mejias, Sala,
Arino, & Querol, 2015; Zhang, Zhuang, & Braatz, 2016) and approx-
imate arbitrarily well nonlinear dynamics (Girard & Pappas, 2011)
makes them a central model in the class of hybrid systems. Thus,
it is not surprising that switching systems have been the subject
of huge research efforts with existing techniques arguably more
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powerful than the ones targeted to general hybrid systems. Our
goal in this paper is to push further the boundary of application
of these techniques, by combining them with combinatorial tech-
niques from graph and automata theory. As a first step, we tackle
an intermediate family of systems, known as constrained switching
systems (Athanasopoulos & Lazar, 2014; Dai, 2012; Philippe, Essick,
Dullerud, & Jungers, 2015; Wang, Roohi, Dullerud, & Viswanathan,
2017). These systems are more general than classical switching
systems in that they have their switching signals restricted by a
labeled directed graph, namely the switching constraints graph.
For example, in Fig. 1, the system switches between the modes 1
and 2 and an admissible switching sequence is the one that can be
realized by a path in the directed graph G1.

Recently, multi-sets have been introduced in order to analyze
invariance properties of constrained switching systems (Athana-
sopoulos, Smpoukis, & Jungers, 2017; Blanchini & Miani, 2008;
De Santis, Di Benedetto, & Berardi, 2004; Philippe et al., 2015). A
multi-set, is a collection of sets, one per node of the graph that
defines the switching constraints. When a multi-set is invariant,
the system trajectories that start from within this multi-set are
always confined in one of its members. In this article we establish
new, efficient, invariant (multi-)set constructions by exploiting
the topological properties of the switching constraints graph. We
highlight that the notion of multi-set is useful, beyond its proper
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Fig. 1. A switching constraints graph G1 for a systemwith twomodes. For example,
the sequence 21121 is admissible whereas 212122 is not.

Fig. 2. Two possible reductions ofG1 (Fig. 1).We observe that the sequence of labels
appearing in any infinite length path of G1 can be generated by either graph.

Fig. 3. The T -lifted graph of G1 of Fig. 1, T = 2. There are as many edges as
admissible switching sequences of length 2 in G1 .

Fig. 4. The P-lifted graph of G1 of Fig. 1 using the Path-Dependent Lift, P = 1. The
graph has as many nodes as different walks of length 1 in G1 .

physical meaning, for improving the state of the art in classi-
cal problems on simpler models, like LTI systems, or arbitrary
switching systems. We adopt two opposite and complementary
approaches, one reducing and the other increasing the size of the
graph.

The first direction borrows the concept of unavoidability of a set
of nodes, a notion used in Computer Science, e.g., Lothaire (2002,
Proposition 1.6.7). Roughly, by keeping only a subset of ‘important’
nodes we are able to show that we can work with a reduced
graph, and consequently a reduced system, and associate explicitly
invariance properties of the reduced system with the original one,
leading to efficient algorithmic constructions. See for example two
possible reduced graphs of G1 in Fig. 2.

The second direction considers the lifting of the switching con-
straints graph, a classical idea in switching systems analysis, e.g.,
Bliman and Ferrari-Trecate (2003), Lee and Dullerud (2006) and
Philippe et al. (2015). Firstly, we consider the Iterated Dynamics
Lifted graph (abbr. T -lifted graph), which captures the switching
constraints for the iterated dynamics of the systems, see, e.g., Fig. 3
for the 2-lift of G1 of Fig. 1. We exploit this construction to improve
existing invariant multi-set computation algorithms by reducing
the number of iterations required.

Secondly, we explore the Path-Dependent Lifted graph (abbr.
P-lifted graph), see, e.g., Fig. 4 for the 1-lifted graph of G1, in for-
ward reachability computations. This choice enables us to establish
algorithms for non-convex approximations of invariant multi-sets
described by a union of a prespecified number of convex sets.

Together with the theoretical contributions, we revisit three
problems of set invariance in control. In particular, we consider

systems under dwell-time specifications (Dehghan & Ong, 2012a,
b; Liberzon, 2003; Zhang et al., 2016). We compute, to the best
of our knowledge for the first time, the minimal invariant multi-
set and its approximations, via a Reduced graph consisting of the
minimum number of nodes. Moreover, we compute the maximal
invariant set for uncertain linear systems faster compared to the
standard backward reachability algorithm, see e.g., Blanchini and
Miani (2008). Last, we propose a new method to compute non-
convex approximations of the minimal invariant set for switching
systems (Artstein & Rakovic, 2008; Kolmanovsky & Gilbert, 1998;
Rakovic, Kerrigan, Kouramas, & Mayne, 2005; Rakovic, Kouramas,
Kerrigan, & Mayne, 2005).
Notation: The ball of radiusα of an arbitrary norm isB(α) and of the
infinity norm is B∞(α). The Minkowski sum of two sets S1 and S2
is S1 ⊕ S2. A C-set S ⊂ Rn is a convex compact set which contains
the origin in its interior (Blanchini, 1999). The cardinality of a set V
is denoted by |V|. Let G(V, E), or G, be a labeled directed graphwith
a set of nodes V and a set of edges E . The set of sequences of labels
appearing in a path from a node s ∈ V to a node d ∈ V is denoted
by σ (s, d). The set of sequences of nodes appearing in a walk from
s ∈ V to d ∈ V is m(s, d). We denote the 1-norm of a vector x with
∥x∥1, and the vector with elements equal to onewith 1. The convex
hull of a set S ⊂ Rn is denoted by conv(S).

2. Preliminaries

We consider a set of matrices A := {A1, . . . , AN} ⊂ Rn×n and
disturbance sets W = {W1, . . . ,WN}, Wi ⊂ Rn. We consider the
sets of nodes and edges V := {1, 2, . . . ,M} and E = {(s, d, σ ) :

s ∈ V, d ∈ V, σ ∈ {1, . . . ,N}}. We denote the corresponding
graph by G(V, E), or G. The set of outgoing nodes of a node s ∈ V
is Outgoing(s, G) := {d ∈ V : (∃σ ∈ {1, . . . ,N} : (s, d, σ ) ∈ E)}.
Finally, we consider constraint sets Xi ⊂ Rn, i ∈ {1, . . . ,M}.

Formally, the systems we study are described by the following
set of relations

x(t + 1) = Aσ (t)x(t) + w(t), (1)
z(t + 1) ∈ Outgoing(z(t), G(V, E)), (2)

w(t) ∈ Wσ (t), (3)
(x(0), z(0)) ∈ Rn

× V, (4)

subject to the constraints

(z(t), z(t + 1), σ (t)) ∈ E, (5)
x(t) ∈ Xz(t), (6)

for all t ≥ 0. We underline that the switching signal σ (t) depends
on the discrete variable z(t) at each time instant, however for
notational convenience we make a slight abuse and write σ (t)
instead of σ (z(t)). We note the system (1)–(6) is defined in the
hybrid state space1 [x⊤ z]⊤ ∈ Rn

× V . We call nominal the
disturbance-free system, i.e., the system x(t + 1) = Aσ (t)x(t)
together with (2), (4)–(6). The stability of the nominal system is
characterized by the constrained joint spectral radius (Dai, 2012)
ρ̌(A, G) = limt→∞ρ̌t (A, G), where

ρ̌t (A, G) := max{∥Aσ (t−1) · · · Aσ (0)∥
1/t

: z(0) ∈ V,

z(t) satisfies (2), σ (t) satisfies (5), t = 0, . . . , t − 1}.

The nominal system is asymptotically stable if and only if
ρ̌(A, G) < 1 (Dai, 2012, Corollary 2.8). We consider the following
assumptions.

Assumption 1. The constraint and disturbance sets Xi ⊂ Rn, i =

1, . . . ,M and Wi, i = 1, . . . ,N , are C-sets.

1 Indeed, from (2), (4) it follows that z(t) ∈ V , for all t ≥ 0.
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