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a b s t r a c t

We propose a peaking-free low-power high-gain observer that preserves the main feature of standard
high-gain observers in terms of arbitrarily fast convergence to zero of the estimation error, while
overtaking their main drawbacks, namely the ‘‘peaking phenomenon’’ during the transient and the
numerical implementation issue deriving from the high-gain parameter that is powered up to the order
of the system. Moreover, the new observer is proved to have superior features in terms of sensitivity
of the estimation error to high-frequency measurement noise when compared with standard high-gain
observers. The proposed observer structure has a high-gain parameter that is powered just up to two
regardless the dimension of the observed system and adopts saturations to prevent the peaking of the
estimates during the transient. As for the classical solution, the new observer is robust with respect to
uncertainties in the observed system dynamics in the sense that practical estimation in the high-gain
parameter can be proved.

© 2018 Published by Elsevier Ltd.

1. Introduction

High-gain observers appeared in the literature at the end of the
1980’s and since then have attracted a lot of research attention
due to their simplicity and good performance in noise-free settings
(see the survey Khalil & Praly, 2014 and references therein). See
also their use in the separation principles (Atassi & Khalil, 2000),
output feedback stabilization (Teel & Praly, 1994), output regula-
tion (Byrnes & Isidori, 2004) or fault detection (Martinez-Guerra &
Mata-Machuca, 2013).

In the design of a ‘‘standard’’ high-gain observer, the high-gain
parameter, denoted as ℓ throughout this paper, is usually powered
up to n, with n denoting the dimension of the observed state.
This fact raises numerical issues in the implementation when the
state dimension is high or when the high-gain parameter has to
be chosen large to achieve fast estimation. Furthermore, high-
gain observers exhibit, during the transient, the so-called peak-
ing phenomenon, namely the state of the observer shows large
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peaks of a magnitude that are proportional to ℓn−1. Last but not
least, high-gain observers are known for having high-sensitivity to
high-frequency measurement noise, which makes state estimates
practically unusable especially when the dimension n is very large.
In order to address the peaking phenomenon, different schemes
have been proposed in Astolfi and Praly (2017) and Maggiore and
Passino (2003). In Astolfi and Praly (2017), the authors modify the
observer dynamics under a convexity assumption in order to con-
strain the state of the observer in some prescribed convex closed
set. This technique can be applied to multi-input multi-output
nonlinear systems. In Maggiore and Passino (2003), the authors
deal with peaking by means of a projection approach. In order to
improve the sensitivity to measurement noise, the majority of re-
searchers focused on schemeswith time-varying gains, eitherwith
switched approaches, Ahrens and Khalil (2009), or with adaptive
design, Boizot, Busvelle, and Gauthier (2010) and Sanfelice and
Praly (2011). Recently, in Khalil and Priess (2016), a low-pass filter
has been proposed in order to reduce the effect of measurement
noise in output feedback stabilization problems.

A new high-gain observer able to overtake some of the draw-
backs of classical structures has been recently proposed in Astolfi
andMarconi (2015). In that paper, it is shownhow to design a high-
gain observer of dimension 2n−2 for observable nonlinear systems
with dimension n, which implements only gains proportional to
ℓ and ℓ2 while preserving the same behaviours of a standard
high-gain observer. The new construction relies on an intercon-
nected cascade of n − 1 high-gain observers of dimension two.
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This observer practically solves the aforementioned challenging
problem of numerical implementation present in standard high-
gain observers. Moreover, it has been shown that the new observer
structure substantially improves the sensitivity to high-frequency
measurement noise. The proof of this fact has been presented
in Astolfi and Marconi (2015) only for linear systems, and shown
by numerical simulation in the nonlinear case. The new low-
power high-gain observer has been also shown to be effective for a
much wider class of nonlinear systems, such as system possessing
a non-strict feedback form, see Wang, Astolfi, Marconi, and Su
(2017). It turns out that the new observer structure is effective
in all those frameworks where standard high-gain observers are
typically used, such as output feedback stabilization by nonlinear
separation principle and output regulation, Astolfi, Isidori, and
Marconi (2017). Although the new observer structure solves the
problem of numerical implementation, the peaking phenomenon
is still present. This has been partially solved in Astolfi, Marconi,
and Teel (2016), by adding saturations at various levels in the
observer structure. With the proposed technique, it is possible to
remove the peaking from the first n − 1 state estimates. Along
this route, two similar schemes, which follow the seminal idea
presented in Astolfi and Marconi (2015), have been recently pro-
posed, in Teel (2016) and Khalil (2017), to address the implemen-
tation issues and the peaking phenomenon. In Teel (2016), the
author showshow to build a high-gain observer by interconnecting
a cascade of reduced order high-gain observer of dimension 1.
A simpler scheme, without feedback interconnection terms, that
cannot ensure asymptotic estimate, is presented in Khalil (2017).
It is worth stressing, however, that even if the dimension of the
observers is n, neither scheme improves the sensitivity properties
with respect to standard high-gain observers.

The objective of this work is twofold. On the one hand, we
combine the recent ideas of Astolfi and Marconi (2015) and As-
tolfi et al. (2016) to propose an observer of dimension 2n − 1
which is still ‘‘low power’’ (namely it uses only gains proportional
to ℓ and ℓ2) and yet eliminates the peaking phenomenon. This
is achieved by appropriately adding saturation functions in the
observer dynamics. In particular, the n estimates provided by the
proposed observer are peaking-free while the additional n − 1
auxiliary variables may reach values proportional to ℓ (and not
to ℓn−1 as in standard high-gain observers) during the transient.
The resulting gain choices and transient behaviours address the
numerical challenge. On the other hand, we fully characterize the
sensitivity to high-frequency measurement noise for nonlinear
systems by showing the improvement with respect to standard
high-gain observers. This is done by extending the analysis tool
recently introduced in Astolfi, Marconi, Praly, and Teel (2016) in
which the sensitivity tomeasurement noise has been characterized
for standard high-gain observers. In this work, for the sake of
simplicity, we focus on the same class of nonlinear systems in
canonical observability form considered in Astolfi and Marconi
(2015), but similar results hold for the wider class of systems in
feedback form (Wang et al., 2017).

The paper is organized as follows. We present the framework
and we recall the high-gain observer technique in Section 2. Then,
we provide the main results in Section 3. A simulation example is
given in Section 4. The proofs of the main results are detailed in
Section 5. Conclusions are discussed in Section 6. Some technical
lemmas are given in Appendix.

Notation. R denotes the field of real numbers and, for x ∈ Rn, |x|
denotes the Euclidean norm of x. With s : R≥0 → Rm a bounded
signal, we define ∥s∥b

a := supt∈[a,b)|s| and ∥s∥∞ := ∥s∥∞

0 . For i > 0
we denote by Ai ∈ Ri×i, Bi ∈ Ri×1, Ci ∈ R1×i a triplet in prime form,
namely

Ai =

(
0i−1,1 Ii−1
0 01,i−1

)
, Bi =

(
0i−1,1
1

)
, CT

i =

(
1

0i−1,1

)
,

where 0i,j denotes a matrix of dimension i × j containing zeros
everywhere, and Ii denotes the identity matrix of dimension i. For
r > 0, a saturation function satr : R → R is any strictly increasing
C1 function satisfying

satr (s) := s ∀ |s| ≤ r , |satr (s)| ≤ r + 1 ∀ s ∈ R .

With C[0,1] we denote the set of continuous functions from R to
[0, 1].

2. The framework and highlights on high-gain observers

In this paper we deal with nonlinear single-input single-output
systems that canbewritten,maybe after a change of coordinates, in
the so-called phase-variable form (see Gauthier and Kupka (2001))

ẋi = xi+1, i = 1, . . . , n − 1,
ẋn = ϕ(x, d(t))
y = x1 + ν(t)

(1)

where x = (x1, . . . , xn)T ∈ Rn is the state, y is themeasured output
with ν an additive unknown measurement noise, and t ↦→ d(t) ∈

Rnd , nd > 0, is any (unknown) bounded signal that may represent
parametric uncertainties in the function ϕ(·, ·) or unknown distur-
bances. The following assumption is made throughout the paper.

Assumption 1. The compact sets D ⊂ Rnd and X ⊂ Rn and the
positive ϕ̄x > 0 are such that

• d(t) ∈ D and x(t) ∈ X for all t ≥ 0;
• |ϕ(x1, d)−ϕ(x2, d)| ≤ ϕ̄x|x1 − x2| for all x1, x2 ∈ X and for all

d ∈ D.

We observe that all the forthcoming analysis could be extended,
with the appropriate modifications, to the case in which the func-
tion ϕ(·, ·) takes the form ϕ(x, d, t) where the dependence on t
takes into account the effect of possible known inputs. For sake of
simplicity, however, we do not consider this case.

In the previous framework, we are interested in the semi-
global high-gain observation problem, namely in the design of an
asymptotic observer with a rate of convergence that can be made
arbitrarily fast by tuning a single parameter (see Khalil and Praly
(2014) and references therein).

The standard high-gain observer for the class of systems (1) is
given by
˙̂xi = x̂i+1 + kiℓie1 , i = 1, . . . , n − 1,
˙̂xn = ϕs(x̂) + knℓn e1 ,

(2a)

inwhich x̂ = (x̂1, . . . , x̂n)T is the state, ℓ is the high-gain parameter,
e1 is the output injection term defined as

e1 := y − x̂1 , (2b)

k1, . . . , kn are design coefficients and ϕs(·) is any locally Lipschitz
bounded function that agrees with ϕ(·, 0) on a compact set X ′

⊃ X ,
namely ϕs(x) = ϕ(x, 0) for all x ∈ X ′ and for all t ≥ 0. The tuning
of the observer involves choosing the design parameters ki’s so
that, having defined the vector K := col(k1, . . . , kn), the matrix
An − KCn is Hurwitz, and taking the high-gain parameter ℓ large
enough in relation to the Lipschitz constant of ϕ(·, ·) on X × D.
In particular, under Assumption 1, it is possible to prove that, by
letting ℓ⋆ := 2 ϕ̄x |P|, in which P is the symmetric positive definite
matrix solution of the Lyapunov equation

P(An − KCn) + (An − KCn)TP = −I,

then for all ℓ ≥ ℓ⋆ the estimation errors provided by the observer
(2) satisfy the following bounds for all t ≥ 0

|x̂i(t) − xi(t)| ≤ c1 ℓi−1 exp(−c2 ℓ t)|x̂(0) − x(0)|

+
c3

ℓn+1−i
∥d∥∞ + c4ℓi−1

∥ν∥∞

(3)
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