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a b s t r a c t

Dynamic networks are interconnected dynamic systems with measured node signals and dynamic
modules reflecting the links between the nodes. We address the problem of identifying a dynamic
network with known topology, on the basis of measured signals, for the situation of additive process
noise on the node signals that is spatially correlated and that is allowed to have a spectral density
that is singular. A prediction error approach is followed in which all node signals in the network
are jointly predicted. The resulting joint-direct identification method, generalizes the classical direct
method for closed-loop identification to handle situations of mutually correlated noise on inputs and
outputs. When applied to general dynamic networks with rank-reduced noise, it appears that the natural
identification criterion becomes a weighted LS criterion that is subject to a constraint. This constrained
criterion is shown to lead to maximum likelihood estimates of the dynamic network and therefore to
minimum variance properties, reaching the Cramér–Rao lower bound in the case of Gaussian noise. In
order to reduce technical complexity, the analysis is restricted to dynamic networks with strictly proper
modules.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

It is becoming more common to model complex dynamic sys-
tems as networks of interconnected dynamic modules, or dynamic
networks. Data-driven modeling, or identification, of modules in
these dynamic networks is then a natural problem to address.
Applications range over many fields, for example identification of
dynamics that connect different (MPC) control loops in industrial
process control (Gudi & Rawlings, 2006; Van den Hof, Dankers, &
Weerts, 2018), identification of biochemical networks (Yuan, Stan,
Warnick, & Gonçalves, 2011), modeling of the dynamic behavior
of a ship as a dynamic network (Linder, 2017), and modeling of
stock prices in financial markets as a dynamic network (Materassi
& Innocenti, 2010).
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Various approaches have been developed for identification of
dynamic networks, roughly divided into three categories. The
first approach considers the identification of a single module in
the dynamic network in the situation that the interconnection
structure, or topology, of the network is known. The second ap-
proach focusses on identification of the full network dynamics
for a given topology, and the last category deals with the iden-
tification of the topology (and dynamics) of the network. For
identification of single modules, authors have used e.g. Wiener
filters (Materassi & Salapaka, 2012), while the estimation of para-
metric transfer functions in a prediction error setting has been ad-
dressed in Dankers, Van den Hof, Bombois, and Heuberger (2015),
Dankers, Van den Hof, Heuberger, and Bombois (2016), Gevers
and Bazanella (2015), Linder and Enqvist (2017) and Van den
Hof, Dankers, Heuberger, and Bombois (2013). Identification of
the full network dynamics has been considered by modeling the
network as a state–space system (Haber & Verhaegen, 2014), or as
a network of transfer function modules (Weerts, Van den Hof, &
Dankers, 2016b). Identifiability properties related to this problem
have been addressed in Adebayo et al. (2012), Gevers, Bazanella,
and Parraga (2017), Gonçalves and Warnick (2008), Weerts,
Dankers, and Van den Hof (2015) and Weerts, Van den Hof, and
Dankers (2018). Some different methods for topology detection
can be found in literature, for example following a Bayesian ap-
proach (Chiuso & Pillonetto, 2012), a compressed sensing approach
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Fig. 1. Example of a network with rank-reduced noise. Node signals are wi , being
the outputs of the (circular) summation points, interconnected by modules Gij and
perturbed by non-measured disturbance signals vi . Signals ri are excitation signals
available to the user.

(Hayden, Chang, Gonçalves, & Tomlin, 2016), or through one-
step ahead prediction using Wiener filters (Materassi & Salapaka,
2012).

In this paper we consider networks that consist of measured
node signals,which are interconnected by linear dynamicmodules,
as depicted in Fig. 1, and in linewith the setup as defined inVanden
Hof et al. (2013). We will address the problem of identifying, on
the basis of measured node signals, the dynamics of all modules in
a network, of which the topology is known, and where conditions
on the disturbance signals vi in the network are more general than
typically considered. While in the current literature it is usually
assumed that every node signal in the network has a non-zero
process noise vi that is uncorrelated to all other noises, i.e. for
the vector noise process v it holds that Φv(ω) is diagonal, we will
address two steps of generalization:

• We will allow noise signals on the different node signals to
be spatially correlated, i.e.Φv(ω) is not necessarily diagonal,
and

• We will allow Φv(ω) to be singular, implying that node
signals can be noise-free, or that disturbances are exactly
related with each other through a linear filter.

Concerning the first step, this situation includes the handling of
confounding variables, i.e. unmeasured variables that affect both
inputs and outputs of an estimation problem. This notion is widely
used in statistical estimation problems in networks and is also used
in network identification problems, Dankers et al. (2016). The re-
lation between confounding variables and correlated disturbances
has been explained in Van den Hof, Dankers, and Weerts (2017).

Concerning the second step, note that modules in a network
can also be implemented controllers, and controller outputs can
be noise-free, as e.g. typically considered in a classical closed-loop
identificationproblem (Ljung, 1999). In this case there is noprocess
noise on a particular node signal. Alternatively, strong correlations
between disturbance signals can occur e.g. if the network is a
spatially distributed system affected by global disturbances, like a
wind gust affecting wind turbines in a wind park. A deterministic
relation between disturbance signals (like e.g. a delay) will cause
the full disturbance spectrum to lose its full rank. A situation of
loss of full rank is depicted in Fig. 1 where the process noises on
nodes 2 and 3 are the same (perfect correlation). When identifying
the full network dynamics, aiming not only at consistency of the
module estimates, but also at minimum variance results, corre-
lated disturbances will prevent the identification problem to be
decomposable into separate multi-input single-output problems.
The fact that the noise process is allowed to be rank-reduced

causes some fundamental issues that need to be addressed in the
prediction error identification setting.

Identification in the situation of rank-reduced noise is a topic
that has not been widely addressed in the prediction error iden-
tification literature. Dynamic factor models have been developed
in Deistler, Scherrer, and Anderson (2015) and Felsenstein (2014)
to deal with rank-reduced noise. Maximum likelihood estimates
with rank-reduced noise have been obtained for vector autoregres-
sive systems (Kölbl, 2015) and linear regression (Srivastava & von
Rosen, 2002). In a prediction error setting, the property of network
identifiabilityhas beendefined inWeerts et al. (2015) andWeerts et
al. (2018), covering also the situation of rank-reduced noise, while
predictormodels have been analyzed for the situation of noise-free
nodes in Weerts, Van den Hof, and Dankers (2016a). In Weerts,
Van den Hof, and Dankers (2017) a first analysis of consistent
estimation of networkmodels has been presented for the reduced-
rank noise case, leading to the use of weighted and constrained
least-squares identification criteria. Thiswas a further extension of
the preliminarywork of Van denHof,Weerts, and Dankers (2017b)
where an open-loop one-input two-output situation with rank-
reduced output noise was considered.

In this paper we are going beyond the consistency question, by
including an analysis of the asymptotic variance of the prediction
error method, and by developing the maximum likelihood esti-
mator and the Cramér–Rao lower bound on the variance, for the
situation of correlated and rank-reduced noise, while addressing
networks with strictly proper modules. This paper builds on and
further extends the preliminary results of Weerts et al. (2017).

First a definition of the dynamic network setup and the rank-
reduced noise process is given in Section 2. Then, in Section 3,
the prediction error identification setup is presented and a least
squares identification criterion is shown to provide consistent
estimates. In Section 4 the dependencies in the noise process are
explicitly used to construct a constrained least squares identifi-
cation criterion that is shown to lead to a maximum likelihood
estimate under some conditions. An analysis of the asymptotic
variance of the estimates is made in Section 5, where the variance
expressions are related to the Cramér–Rao lower bound. Finally
in Section 6 the theoretical results are illustrated in a numerical
simulation example.

2. Dynamic network definition

Following the basic setup of Van denHof et al. (2013), a dynamic
network is built up out of L scalar internal variables or nodes wj,
j = 1, . . . , L, and K external variables rk, k = 1, . . . , K . Each internal
variable is described as:

wj(t) =

L∑
l=1
l̸=j

G0
jl(q)wl(t) +

K∑
k=1

R0
jk(q)rk(t) + vj(t) (1)

where q−1 is the delay operator, i.e. q−1wj(t) = wj(t − 1);

• G0
jl are strictly proper rational transfer functions, and the

single transfers G0
jl are referred to asmodules in the network.

• rk are external variables that can directly be manipulated by
the user, and R0

jk are proper rational transfer functions;
• vj is process noise, where the vector process v = [v1 · · · vL]

T

is modeled as a stationary stochastic process with ratio-
nal spectral density, such that there exists a p-dimensional
white noise process e := [e1 · · · ep]T , p ≤ L, with covariance
matrixΛ0 > 0 such that

v(t) = H0(q)e(t),

with H0(q) a proper rational transfer function.
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