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a b s t r a c t

In this paper, a projected primal–dual gradient flowof augmented Lagrangian is presented to solve convex
optimization problems that are not necessarily strictly convex. The optimization variables are restricted
by a convex set with computable projection operation on its tangent cone as well as equality constraints.
As a supplement of the analysis in Niederländer and Cortés (2016), we show that the projected dynamical
system converges to one of the saddle points and hence finding an optimal solution. Moreover, the
problem of distributedly maximizing the algebraic connectivity of an undirected network by optimizing
the port gains of each nodes (base stations) is considered. The original semi-definite programming (SDP)
problem is relaxed into a nonlinear programming (NP) problem that will be solved by the aforementioned
projected dynamical system.Numerical examples show the convergence of the aforementioned algorithm
to one of the optimal solutions. The effect of the relaxation is illustrated empirically with numerical
examples. A methodology is presented so that the number of iterations needed to reach the equilibrium
is suppressed. Complexity per iteration of the algorithm is illustrated with numerical examples.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

When solving a convex minimization problem with strong du-
ality, it is well-known that the optimal solution is the saddle point
of the Lagrangian. Hence it is natural to consider the gradient flow
of Lagrangians (also known as saddle point dynamics) where the
primal variable follows the negative gradient flow while the dual
variable follows the gradient flow. Gradient flow of Lagrangians is
first studied by Arrow et al. (1959), Kose (1956) and has been revis-
ited by Feijer and Paganini (2010). Feijer and Paganini (2010) study
the case of strictly convex problems and provides methodologies
to transform non-strictly convex problems to strictly convex prob-
lems to fit the framework. The convergence is shown by employing
the invariance principle for hybrid automata. Cherukuri, Mallada,
and Cortés (2016) study the same strictly convex problem from
the perspective of projected dynamical systems and are able to
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show the convergence by a LaSalle-like invariant principle for
Carathéodory solutions. Instead of considering discontinuous dy-
namics, Dürr and Ebenbauer (2011) propose a smooth vector field
for seeking the saddle points of strictly convex problems. Wang
and Elia (2011) consider a strictly convex problem with equality
constraints and with inequality constraints respectively. Saddle
point dynamics is also used therein, however, it is worth notic-
ing that their problem is still strictly convex. When they con-
sider the problem with inequality constraints, logarithmic barrier
function is used. Though considering nonsmooth problems, Zeng,
Yi, and Hong (2017) use the projected saddle point dynamics of
augmented Lagrangian whose equality constraint is the variable
consensus constraint, and can be viewed as a special case of our
problem. Instead of using the continuous-time saddle point dy-
namics, an iterative distributed augmented Lagrangian method is
developed in Chatzipanagiotis, Dentcheva, and Zavlanos (2015). In
a recent work (Niederländer and Cortés, 2016) and its conference
version (Niederländer, Allgöwer, & Cortés, 2016), the authors con-
sider the nonsmooth case of projected saddle point dynamics and
the dynamics is the same as the ones in the current paperwhen the
objective function is smooth.

In this paper, we will focus on maximizing network algebraic
connectivity distributedly. In Simonetto, Keviczky, and Babuška
(2013), the authors maximize the algebraic connectivity of a

https://doi.org/10.1016/j.automatica.2018.09.004
0005-1098/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2018.09.004
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2018.09.004&domain=pdf
mailto:hanzhang@kth.se
mailto:jieqiang@kth.se
mailto:peng.yi@utoronto.ca
mailto:hu@kth.se
https://doi.org/10.1016/j.automatica.2018.09.004


H. Zhang et al. / Automatica 98 (2018) 34–41 35

mobile robot network distributedly. The authors use first-order
Taylor expansion to approximate the original non-convex problem
and get a convex problem. A more general linear dynamics is
considered and a two-step algorithm is proposed to solve the
problem distributedly. It is shown in Simonetto et al. (2013) that
the algebraic connectivity is monotonically increasing with the
algorithm, while the convergence to one optimal solution is not
explicitly given. Schuresko and Cortés (2008), Yang et al. (2010)
and Zavlanos and Pappas (2008) focus on assuring the connectivity
distributedly, while the algebraic connectivitymaximization is not
considered.

The main contribution of this paper is as follows. As a sup-
plement to Niederländer and Cortés (2016) and its conference
version (Niederländer et al., 2016), we propose a novel analysis
line regarding the convergence of the dynamical system to reach
comparable results. Moreover, the problem of distributedly max-
imizing the algebraic connectivity of an undirected network by
adjusting the ‘‘port gains’’ of each nodes (base stations) is con-
sidered. It is worth noticing that the problem motivates from a
physical system and the goal is to enable each base station to
compute its own optimal port gains only using its neighbours’
information, the total number of nodes N and the information be-
longing to itself; one cannot ‘‘design’’ the communication network
according to the structure of the problem or the algorithm. (For
example, Pakazad, Hansson, Andersen, & Rantzer, 2015.) We solve
the original problem, which is an SDP, by relaxing it into an NP
problem. TheNP problem is not strictly convex, hencewe adapt the
projected saddle point dynamics method proposed in this work to
solve the aforementioned NP problem. Numerical examples show
that the aforementioned algorithm converges to one of the optimal
solutions.

2. Preliminaries and notations

We denote 1 = 11T as an N dimensional all-one matrix, where
1 is an N dimensional all-one vector. The element located on the
ith row and jth column of a matrix A is denoted as [A]ij. If matrix
A1−A2 is positive semi-definite, then it will be denoted as A1 ⪰ A2.
We use ∥·∥ to denote 2-norm of vectors. |S| denotes the cardinality
of set S. And any notation with the superscript ∗ is denoted as the
optimal solution to the corresponding optimization problem. tr(·)
denotes the trace of amatrix. ⟨·, ·⟩2 is denoted as the inner-product
in Euclidean space and ⟨A1, A2⟩M = tr(A1A2) denotes the inner-
product in Sn, which is the Hilbert space of n×n symmetricmatrix.

Assume K ⊂ Rn is a closed and convex set, the projection of a
point x to the set K is defined as PK (x) = argminy∈K∥x − y∥. For
x ∈ K , v ∈ Rn, the projection of the vector v at x with respect to K
is defined as: (see Brogliato, Daniilidis, Lemaréchal, & Acary, 2006;
Nagurney & Zhang, 2012) ΠK (x, v) = limδ→0

PK (x+δv)−x
δ

= PTK (x)(v),
where TK (x) denotes the tangent cone of K at x. The interior, the
boundary and the closure of K are denoted as int(K ), ∂K and cl(K ),
respectively. The set of inward normals of K at x is defined as
n(x) =

{
γ | ∥γ ∥ = 1, ⟨γ , x − y⟩2 ≤ 0, ∀y ∈ K

}
, and ΠK (x, v)

fulfils the following lemma:

Lemma 1 (Nagurney & Zhang, 2012). If x ∈ int(K ), then ΠK (x, v) =

v; if x ∈ ∂K, then ΠK (x, v) = v + β(x)n∗(x), where n∗(x) =

argmaxn∈n(x)⟨v, −n⟩ and β(x) = max{0, ⟨v, −n∗(x)⟩}.

Let F be a vector field such that F : K ↦→ Rn, the projected
dynamical system is given by ẋ = ΠK (x, F (x)). Note that the right
hand side of above dynamics can be discontinuous on the ∂K .
Hence given an initial value x0 ∈ K , the systemdoes not necessarily
have a classical solution. However, if F (x) is Lipschitz continuous,
then it has a unique Carathéodory solution that continuously de-
pends on the initial value (Nagurney & Zhang, 2012).

3. Problem formulation and projected saddle point dynamics

In this section, we consider the following optimization problem
defined on Rn:
minimize

x∈K
f (x)

subject to Ax − b = 0,
(1)

where f : Rn
↦→ R and A ∈ Rm×n. K is a convex set such that

calculating the projection on its tangent cone is computationally
cheap. f (x) is a convex function but not necessarily strictly convex.
It is also assumed that the gradient of f (x) is locally Lipschitz
continuous and the Slater’s condition holds for (1). Hence strong
duality holds for (1).

The Lagrangian L : K × Rm
↦→ R for the problem (1) is given

by

L (x, v) = f (x) + vT (Ax − b), (2)

where v ∈ Rm is the Lagrangian multiplier of the constraint
Ax − b = 0. Since strong duality holds for (1), then (x∗, v∗) is a
saddle point of L (x, v) if and only if x∗ is an optimal solution to
(1) and v∗ is optimal solution to its dual problem. The augmented
Lagrangian LA : K × Rm

↦→ R for (1) is given by LA(x, v) =

f (x) + vT (Ax − b) +
ρ

2 (Ax − b)T (Ax − b), where ρ > 0 is the
damping parameter that will help to suppress the oscillation of
x during optimization algorithms. Without loss of generality, we
choose ρ = 1.

We propose to find the saddle point of (2) via the saddle point
dynamics projected on the set K , i.e.,

ẋ = ΠK (x, −∇f (x) − ATv − AT (Ax − b))

= ΠK (x, −
∂LA(x, v)

∂x
), (3a)

v̇ = Ax − b =
∂LA(x, v)

∂v
. (3b)

Note that it is assumed that ∇f (x) is locally Lipschitz continuous,
therefore there is a unique Carathéodory solution for the dynam-
ics (3).

4. Convergence analysis

In this section,we analyse the convergence for (3) and startwith
the analysis of the equilibriumpoint of (3). Niederländer andCortés
(2016) consider the nonsmooth case of projected saddle point
dynamics and the dynamics are the same as the ones in the current
paper when the objective function is smooth. As a supplement,
we propose a novel analysis line regarding the stability of the
dynamical system to reach comparable results.

Proposition 2. (x∗, v∗) is a saddle point to (1) if and only if it is an
equilibrium of (3).

Proof. Since strong duality holds for (1), the optimality conditions
become necessary and sufficient conditions. The optimality con-
dition for (1) is given by −∇f (x∗) − ATv∗

∈ NK (x∗), Ax∗
− b =

0, Eskelinen (2007), which implies−∇f (x∗)−ATv∗
+AT (Ax∗

−b) ∈

NK (x∗), where NK (x∗) denotes the normal cone of K at x∗. This
implies ΠK (x∗, −∇f (x∗) − ATv∗

− AT (Ax∗
− b)) = 0, therefore,

(x∗, v∗) is an equilibrium point of (3). On the other hand, if (x∗, v∗)
is an equilibrium point of (3), it must have −∇f (x∗) − ATv∗

+

AT (Ax∗
−b) ∈ NK (x∗) and Ax∗

−b = 0, which implies the optimality
condition. □

Proposition 3. Given an initial value (x(0), v(0)), where x(0) ∈ K,
the trajectory of the projected dynamical system (3) asymptotically
converges to one of the saddle points of (1).
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