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a b s t r a c t

Based on a class of industrial processes, a new distributed fault diagnosis approach and a collaborative
operational fault tolerant control law are proposed for an irreversible interconnected stochastic distribu-
tion control (SDC) system with boundary conditions. This control method is different from the existing
collaborative fault tolerant controllerswhich enable the output probability density function (PDF) to track
a desired PDF as close as possible. When fault occurs, a setpoint redesigned fault tolerant approach is
adopted to accommodate the fault instead of reconstructing the controller. An augmented PID nominal
controller and a setpoint compensation item with linear structure are used to obtain a collaborative
operational fault tolerant controller via solution of linear matrix inequalities (LMIs). Simulations are
included to show the effectiveness of the proposed algorithms where encouraging results have been
obtained.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

During the last decades there has been considerable interest
in the development of modeling and control for interconnected
systems (Antonelli, 2013; Patton et al., 2007; Yang, Jiang, & Zhou,
2017). So far, there are mainly two types of couplings among sub-
systems for the interconnected systems: Physical couplings (He,
Wang, Liu, Qin, & Zhou, 2017; Yang, Jiang, Staroswiecki, & Zhang,
2015) and Network connections (Ma & Yang, 2016; Zuo, Zhang, &
Wang, 2015) . For the above interconnected systems, three main
control frameworks have been considered in order to compen-
sate the coupled-dynamics: (1) Centralized framework (Zhang,
Liu, & Zhang, 2005) where the whole interconnected system is
supervised by one controller; (2) Decentralized framework (Li &
Tong, 2017; Panagi & Polycarpou, 2011) where the stability of the
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entire system is guaranteed by using only local information; and
(3) Distributed framework (Keliris, Polycarpou, & Parisini, 2015;
Panagi & Polycarpou, 2013) where multiple local controllers are
designed for the exchange of information between subsystems.

Comparedwith the conventional control methods (Blanke, Kin-
naert, Lunze, & Staroswiecki, 2006; Shen, Shi, & Jiang, 2017), the
design and analysis of interconnected systems ismore complicated
since the stability and performance of individual subsystem need
to be addressed, in the meantime the communication with delays
and loss of data packets which can have impact on other subsys-
tems should be considered. The collaborative controller design for
such systems must insure the stability of the whole system, espe-
cially ensure the ability of operating within certain performance
margins in the presence of faults.

Different from the prior fault tolerant controller, the impacts
induced by the fault occurring in any of the subsystem or the com-
munication channel are not only for the subsystem itself but also
for the other subsystems due to the system coupling. Therefore, a
collaborative fault tolerant control scheme needs to be developed
in order to compensate the effects of fault on the local subsystems.

The existing results of fault tolerant control for interconnected
systems are mainly based on the generalized models which are
not suitable for some industrial processes, such as food particles
processing procedure, molecular weight distribution control pro-
cess and mineral froth flotation process. These systems contain N
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series connected subsystems in addition the operational process
is irreversible. More specifically, the output of the previous sub-
system may not act as the input of the next subsystem but as a
boundary condition which causes the system parameter matrices
to be influenced by the previous subsystems (Ren, Wang, & Wang,
2015).

Many stochastic control methods always assume that systems
and variables subject to Gaussian distribution. In fact, many practi-
cal industrial processes do notmeet this assumption. Motivated by
this problem, Hong Wang proposed a novel approach for SDC sys-
tems which could directly control the shape of output PDF, i.e. the
output SDC systems (Wang, 2000). Unlike the classical systems
control problem, the objective concerned in the output SDC system
is to achieve the tracking performance for the PDF of the system
output, rather than the actual output values. On the basis of the SDC
system, fault diagnosis and fault tolerant control methods were
also developed besides a number of control algorithms. However,
all the results were presented only for controlling the individual
SDC system (Yao, Qin, Wang, & Jiang, 2012; Zhou, Li, & Wang,
2014). In fact, some problems are difficult or even impossible to
solve by an individual system, such as multi-agent system(MAS)
and the corresponding control method namely the cooperative (or
collaborative) control. To address this issue, a number of profound
results have been established for cooperative control ofMAS (Ren&
Beard, 2005). Furthermore, cooperative fault tolerant control, as an
important part of cooperative control, should also be constructed
when faults occur in interconnected system.

The conventional FTC for SDC systems focus on designing fault
tolerant controllers after fault occurs so that the closed loop system
is stable and the controlled output PDFs follow the designed PDFs
as close as possible, under the assumption that the designed PDF
is given. However, it is difficult to give an appropriate PDF to be
tracked which can not only guarantee the stability of the whole
system but also keep the system operating at optimal conditions.

The research on such FTC is still limited to a single control pro-
cess, without considering the effect of the operational layer on the
feedback control layer in case of failure. Moreover, the dynamics
of fault operating conditions are different for industrial processes.
It is difficult to use the existing methods for the diagnosis of fault
caused by inappropriate setpoint and the self-recovery control in
operational control for SDC systems. Inspired by Chai (Chai, Qin,
& Wang, 2014), it is necessary to study a new diagnosis of fault
operating condition aswell as self-recovery control in collaborative
SDC systems. In this paper, we tackle the operational fault tolerant
tracking problem of collaborative SDC system with time-delays.
To compensate actuator failure effects on the PDF tracking and
maintain the system operation under an optimized status, an op-
erational fault tolerant control algorithm is designed by estimating
the faults and tuning the setpoint timely and appropriately. So that
the overall system stability and acceptable performance can be
maintained in the event of faults.

The rest of this paper is organized as follows. The problem
description is given in Section 2. In Section 3, fault diagnosis al-
gorithm is proposed. Section 4 gives the design of operational fault
tolerant controller for collaborative SDC system. Simulation results
are included in Section 5, which is followed by some concluding
remarks in Section 6.

2. System description

2.1. Preliminaries

Consider a directed graph G = (V, E,A) with a nonempty finite
set ofN nodesV = (v1, v2, . . . , vN ), a set of edges or arcs E ⊂ V×V ,
and the adjacency matrix A = [aij] ∈ ℜ

N×N . An edge rooted at
node vj and ended at node vi is denoted by (vj, vi), which means

information can flow from node vj to node vi. aij is the weight of
edge (vj, vi) and aij = 1 if (vj, vi) ∈ E , otherwise aij = 0 . Node vj
is called a neighbor of node vi if (vj, vi) ∈ E . The set of neighbors of
node vi is denoted as Ni = {j|(vj, vi) ∈ E} . Define the in-degree
matrix as D = diag{di} ∈ ℜ

N×N with di =
∑

j∈Ni
aij and the

Laplacian matrix as L = D − A.
The edges in the form of (vi, vi) are called loops. G = diag{gi} ∈

ℜ
N×N is denoted as a loopmatrix and has at least one diagonal item

being 1. A graph with loops is called a multigraph, otherwise it is a
simple graph.

2.2. System description

Consider the dynamic collaborative stochastic distribution sys-
tem which consists of N subsystems connected in the way as
shown in Fig. 1 with inputs ui(t) ∈ ℜ

mi , (i = 1, 2, . . . ,N) ,
respectively. Denote zi(t) ∈ [ai, bi] as the outputs of the concerned
dynamic stochastic subsystems, respectively and assume that they
are uniformly bounded.

In the future, fi(t) represents the unknown fault in the whole
collaborative system. The output probability distribution functions
of zi(t) are denoted by γi(y, ui)which canbe obtained by calculating
the following probability (Wang, 2000):

P{a ≤ zi(t) ≤ ξi|ui(t)} =

∫ ξi

a
γi(y, ui(t))dy

where P{a ≤ zi(t) ≤ ξi|ui(t)} is the probability of the output zi(t)
lying inside the interval [a, ξi] when ui(t) is applied to the system
with ξi(t) ∈ [a, b]. As shown in Fig. 1, the considered subsystems
are connected in series, the output PDF of the previous subsystem
i affects the next i + 1 subsystem as a boundary condition. Denote

C(y) = [b1(y) b2(y) · · · bn−1(y)]

Vi(t) = [vi1(t) vi2(t) · · · vi,n−1(t)](Vi(t) ̸= 0)

Based on the well-known B-spline neural networks, the follow-
ing square-root B-spline model has been used to approximate the
output PDFs γi(y, ui(t)).√

γi(y, ui) =

n∑
j=1

vij(ui)bj(y)

= C(y)Vi(t) + h(Vi(t))bn(y) + ωi(y, ui) (1)

Different from the previous result for the square root B-spline
models (Ren et al., 2015), model error ωi(y, ui) is also dealt with
in this paper, which can obviously make the concerned model
more feasibly. Furthermore, the model uncertainty ωi(y, ui) satisfy
|ωi(y, ui)| ≤ δωi for all {y, ui} where δωi is a known positive
constant. In Eq. (1), bj(y) ≥ 0, (j = 1, 2, . . . , n) are pre-specified
basis B-spline functions defined on [a, b] respectively. vij(ui) (de-
noted as vij(t) for simplicity) are the corresponding weights for
all of the stochastic distribution subsystems. The output PDFs
satisfy the condition

∫ b
a γi(y, ui)dy = 1. This means that only n-1

weights are independent for any of the subsystem. Denote E1 =∫ b
a CT (y)C(y)dy, E2 =

∫ b
a C(y)bn(y)dy, E3 =

∫ b
a b2n(y)dy, then we

have

h(Vi(t)) =
1
E3

(−E2Vi(t) ±

√
V T
i (t)E0Vi(t))

where E0 = E1E3 − ET
2 E2 and h(Vi(t)) is a nonlinear function

assumed to satisfy the following Lipschitz condition (Guo &Wang,
2005):

∥hi(V1) − hi(V2)∥ ≤ ∥Ui(V1 − V2)∥ (2)

for any V1(t) and V2(t) where Ui is a knownmatrix. Actually, many
nonlinearities satisfy the Lipschitz condition, at least locally.
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