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a b s t r a c t

This paper is concernedwith identification of continuous-time output-errormodelswith time-delay from
relay feedback tests. Conventional methods for solving this problem consist in deriving analytical limit
cycle expressions and fitting them to measured shape factors. However, they may fail to handle different
limit cycles uniformly, due to the structural differences in the analytical expressions. To overcome this
problem, we consider a more general, data-based, parametric identification framework using sampled
limit cycle data. A frequency domain method that minimizes the sum of squared output-errors is
developed. The proposed method can be of high accuracy, thanks to the periodic input–output signals
provided by sustained relay feedback oscillations, which can help to reduce leakage and aliasing errors.
Besides, a distinctive merit of the proposedmethod is that identification of stable and unstable plants can
be equally simple. The effectiveness and superiority of the proposed method are demonstrated by means
of both theoretical analyses and simulation examples.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Relay feedback tests were initially proposed in Åström and
Hägglund (1984) for automatic tuning of PID controllers. The basic
idea behind is to estimate the critical frequency and the corre-
sponding plant gain from a relay-produced limit cycle via the
so-called describing function (DP) method. Once the two shape
factors have been obtained, the controller parameters can be read-
ily determined. The main disadvantage of the DP method lies in
an approximation of the system response by its first harmonic,
which is valid only if the limit cycle is sufficiently near a sinu-
soid. For some circumstances such as high order or long time-
delay processes, erroneous results may be generated (Atherton,
2006; Hang, Åström, & Wang, 2002). To circumvent this problem,
an alternative is to apply model-based controller design instead
of relay feedback auto-tuning. In particular, we first identify a
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process model from measured shape factors by using some sys-
tem identification method, and subsequently we design controller
parameters based on this identified model. Various methods for
the identification purpose have been proposed in the literature.
In Wang, Hang, and Zou (1997), exact expressions for periods and
amplitudes of limit cycles were derived. On this basis, a method
was proposed to identify first-order models plus dead-time from
measured shape factors. For non-minimum phase systems, Majhi
(2007) reported a method that is able to identify process models
with four parameters at most. To handle the measurement noise
at the system output, a curve fitting method was used to recover
noise-free limit cycles.

The aforementioned methods have been successful in some
process control applications. However, as it can be seen from
Atherton (2006) andHang et al. (2002), conventionalmethodsmay
have the following two shortcomings:

(1) Limited flexibility of handling different limit cycles. As dis-
cussed inMajhi and Atherton (2000), themaximumnumber
of parameters allowed to be estimated is dependent on
the shape properties of a limit cycle. For example, from an
odd symmetrical limit cycle two unknown parameters can
be found, while from an asymmetrical limit cycle four can
be found. In addition, the analytical expressions commonly
differ from limit cycle to limit cycle (Panda & Yu, 2003) and,
as a consequence, the solver for each limit cycle is more or
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less ad hoc. Therefore, there is a need to derive amethod that
is able to handle different limit cycles in a unified way.

(2) Sensitivity to measurement noise. In conventional meth-
ods, the unknown parameters are estimated by solving a
set of algebraic equations constructed based on measured
shape factors. Therefore, the parameter estimates can be
accurate only if the limit cycles are noise-free. However,
this is practically impossible due to inevitable disturbing
noise on the system output and measurement. Thus, in a
first step one needs to recover the noise-free limit cycles
from their noisy observations. Without this, the optimality
of parameter estimates, or even the existence of solutions,
can be influenced. Several methods to this purpose have
been reported in the literature, such as the curve fitting
technique (Majhi, 2007). To the best of our knowledge, there
is no easy way to access noise-free signals from their noisy
observations, especially in the presence of a high noise level.
Therefore, it is necessary to develop a method that is able to
handle noisy data directly, as well as to generate consistent
parameter estimates.

The complexity in shortcoming (1) stems from the use of an-
alytical expressions which are highly nonlinear in parameters.
Motivated by the fact that real-world systems to be identified
are naturally continuous in time, it would be beneficial to con-
sider a direct continuous-time (CT) identification approach, which
parametrizes the plant by a CT transfer function in general form
and then matches it to sampled input–output data via a least-
squares criterion (Garnier, Mensler, & Richard, 2003; Garnier &
Wang, 2008; Garnier & Young, 2014). It has the advantages that
the input–output data and their derivatives are related to the
parametersmore conveniently than the limit cycle expressions are,
and that the loss function to beminimized is quadratic. Also, direct
CT identification does not require noise-free limit cycle data, as
such the difficulty in shortcoming (2) can be avoided.

An attractive feature of relay feedback tests is the capability of
handling unstable plants, thanks to the feedback mechanism that
is able to prevent the process response from drifting too far. How-
ever, most data-based, time domain methods, for example Baysse,
Carrillo, and Habbadi (2011), Chen, Garnier, and Gilson (2015),
Chen, Gilson, Garnier, and Liu (2017), Chen, Zhuan, Garnier, and
Gilson (2018), Ding,Wang,Mao, and Xu (2015), Gilson and Van den
Hof (2005), Young (2015) and Young and Garnier (2006), cannot
identify unstable plants directly, since they need stable predictors
to compute gradients as well as to evaluate loss function values.
A possibility is to identify the stable, closed-loop system with a
controller as a whole, but this will make the identification more
complicated. Fortunately, as pointed out in Pintelon and Schoukens
(2012) and Pintelon, Schoukens, and Rolain (2008), there is no
problem to model unstable plants in the frequency domain, since
the transfer function is only computed on the imaginary axis. This
motivates an extension of the time domain approach in our previ-
ous work (Chen et al., 2017) to the frequency domain so that both
stable and unstable time-delay plants can be directly identified.
For recent developments on frequency domain identification, the
interested reader is directed to, e.g., Gillberg and Ljung (2010),
Gilson, Welsh, and Garnier (2018), Goos, Lataire, Louarroudi, and
Pintelon (2017), Van den Hof and Douma (2008) and van Herpen,
Oomen, and Steinbuch (2014) for more details. To sum up, the
scope of this paper is to

(1) derive a frequency domain method following from the
methods in Ljung (2002) and Pintelon and Schoukens (1997)
towards direct identification of stable and unstable plants
with time-delay from relay feedback tests;

(2) in the relay feedback framework, illustrate the merits of the
proposed frequency domain identificationmethod, and give
a consistency analysis for the parameter estimates gener-
ated by the proposed method.

The remainder of this paper is organized as follows: The iden-
tification problem is formulated in Section 2. Subsequently, a
frequency domain output-error (OE) method for time-delay CT
plants is presented in Section 3. An analysis on the convergence
of parameter estimates is demonstrated in Section 4. Thereafter,
two numerical examples are presented in Section 5 to illustrate
the effectiveness of the proposed method. Finally, conclusions are
drawn in Section 6.

2. Problem formulation

Let us consider a linear time-invariant, single-input single-
output, CT process with input u(t) and noise-free response x(t)
related by the following differential equation of constant coeffi-
cients

x(n)(t) + ao1x
(n−1)(t) + · · · + aonx(t)

= bo0u
(m)(t − τo) + · · · + bomu(t − τo) (1)

where x(j)(t) denotes the jth-order time-derivative of x(t), τo ⩾ 0
the pure time-delay, and ao1, . . . , aon, b

o
0, . . . , bom the true process

parameters. Note that no stability assumption is made and thus
process (1) can either be stable or unstable.

2.1. Discrete-time measurements

In real-life, themeasurement process is inevitably corrupted by
noise. Even so, in some applications such as computer controlled
systems, accessing the noise-free input is still possible since it is
generated from a given sequence via a hold device. Therefore, it is
reasonable to assume that the input is noise-free while the output,
denoted by z(t), is noise-corrupted

z(t) = x(t) + v(t). (2)

Here, v(t) is considered as CT white noise which cannot be pre-
dicted from past data. As illustrated in Ljung andWills (2010), this
leads to a mathematical difficulty that v(t) has infinite variance.
Thus, instantaneous samples of z(t) cannot be obtained. It is pos-
sible that the state equation (1) is also affected by process noise.
But this case is more difficult to tackle, see Ljung andWills (2010).
To remain simple, we assume that the system is only corrupted by
measurement noise.

According to Åström (1970), CT white noise is a kind of signal
that has a constant power spectral density (PSD) function over the
frequency range ω ∈ (−∞, ∞). Assuming that the PSD function of
v(t) is Sv(ω), the autocorrelation function of v(t), denoted by rv(s),
is linked to Sv(ω) by the well-knownWiener–Khinchin theorem

Sv(ω) =

∫
∞

−∞

rv(s)e−iωtds (3)

rv(s) = E {v(t)v(t + s)} (4)

where i2 = −1 and E is the expectation operator. Sv(ω) is a real-
valued function since rv(s) is symmetric. When Sv(ω) = σ 2 is a
constant, by using the inverse Fourier transform (FT), it can be
shown that

rv(s) =
1
2π

∫
∞

−∞

Sv(ω)eiωsdω = σ 2δ(s) (5)

where δ(s) is Dirac’s delta function. The above result explains why
CT white noise has infinite variance.
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