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a b s t r a c t

Explicit Model Predictive Control often has a complex solution in terms of the number of regions required
to define the solution and the corresponding memory requirement to represent the solution in the
online implementation. An alternative approach to constrained control is based on the use of controlled
contractive sets. However, polytopic controlled contractive sets may themselves be relatively complex,
leading to a complex explicit solution, and the polytopic structure can limit the size of the controlled
contractive set. This paper develops a method to obtain a larger controlled contractive set by allowing
higher order functions in the definition of the contractive set, and explores the use of such higher-order
contractive sets in controller design leading to a low complexity explicit control formulation.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The ability to capture operational constraints is of vital im-
portance in controller design for real-life applications. It is rea-
sonable to state that the ability to handle constraints in a trans-
parent way is what sets the industrially very successful Model
Predictive Control (MPC) (Qin & Badgwell, 2003) apart from the
theoretically elegant – but less industrially successful – LQG
control. Standard MPC solves an optimization problem online, but
due to the computational complexity of MPC it is limited to the
systems which are not safety critical (due to the use of complex
and thus error prone optimization software), have sufficiently
slow dynamics, and/or can afford high performance computational
hardware (Hovd, Olaru, & Bitsoris, 2014). Explicit MPC (Bemporad,
Morari, Dua, & Pistikopoulos, 2002) to some degree resolves this
problem and allows the use of low-complexity computing code
in the online implementation. Unfortunately, the explicit solution
to standard MPC problems often has a highly complex solution,
and even in cases when the explicit solution can be found in
acceptable time the implementation of the solution on the online
control hardware may require excessive memory. Low complexity
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constrained control with modest computational complexity, small
memory requirements and simple, thus verifiable code in the on-
line implementation is therefore desired.

One approach to such low complexity constrained control is
based on the use of a controlled contractive set. The complexity of
the solution will then depend on the complexity of the contractive
set. Therefore, obtaining a controlled contractive set of low com-
plexity is essential for this approach to formulate low complexity
explicit constrained control. Amaximal polyhedral controlled con-
tractive set with a given contraction factor can be obtained by the
iterative procedure described in Dorea and Hennet (1999). How-
ever, the complexity of the contractive set thus obtained may be
very high. A non-iterative procedure for obtaining a contractive set
of low complexity is proposed in Hovd et al. (2014). The approach
is not applicable to systems with identical modes in series (cor-
responding to a non-diagonalizable A-matrix in the system’s state
space representation). Furthermore, the contractive set obtained
in Hovd et al. (2014) is of fixed complexity, which does not allow
trading off the complexity against the size of the contractive set. An
optimization based technique has been proposed in Munir, Hovd,
Sandou, and Olaru (2016) which allows the trading off complexity
versus the size of the set. A solution to the optimization problem
in Munir et al. (2016) not only reduces the on-line computational
complexity of the resulting constrained control, but also ensures
significant reduction in the memory required to store the explicit
solutions. However the method explained in Munir et al. (2016)
is highly non-convex, which makes it difficult to use for finding
sufficiently large contractive sets for higher dimensional systems.
Alternatively, ellipsoidal contractive sets with corresponding lin-
ear control laws can be computed, but the measure of these sets is
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limited by the linear structure of the control law and the inherent
conservatism of the corresponding quadratic Lyapunov function.
This paper proposes amethod to obtain an enlarged contractive set
bydefining the contractive set using a function of variable degree (a
degree which is assumed to be greater or equal to 2, thus including
the quadratic forms as a particular case), and also allowing for
higher order control laws. Note that the function defining the
controlled contractive set can be interpreted as control Lyapunov
function for the closed loop system.

In Section 2, the controller design using controlled contractive
sets is presented, alongwith the formulation for finding the largest
ellipsoidal controlled contractive set fulfilling state and input con-
straints. Section 3 describes a controller design which leads to the
determination of larger contractive sets. The controller design is
inspired by the results in Oishi (2012), but unlike the respective
work, the controller will be defined using only two regions. The
method described in Section 3 is applied to illustrative examples
and the results are described in Section 4, which is followed by a
discussion and conclusions in Section 5.

2. Contractive sets

Consider the constrained control of the linear discrete time
system:

xk+1 = Axk + Buk (1)

with xk ∈ ℜ
nx , uk ∈ ℜ

nu representing the current state and input,
respectively, while xk+1 is the next time step state. The system is
subject to input constraintsU = {uk|Huuk ≤ 1}, withHu ∈ ℜ

npu×nu .

Definition 1. Given a function V : ℜ
nx → ℜ, the level set of V (x)

for a scalar α is the set Sα = {x|V (x) ≤ α}.

Proposition 1. Consider a function V (x) : ℜ
nx → ℜ satisfying the

following properties:

A1 positive definite, with V (0) = 0,
A2 continuous,
A3 radially unbounded, i.e., V (x) → ∞ as ∥x∥ → ∞.

Then

(1) All level sets Sα exist and are bounded for all 0 ≤ α < ∞.
(2) If β < α, Sβ ⊂ Sα .

Proof. From A1 it follows that the level sets Sα = ∅ if α < 0. Claim
(1) follows directly from A1, A2 and A3. For claim (2) we note that
Sβ ⊆ Sα is a consequence of Definition 1. Next, consider two points
x1 and x2 with V (x1) = V (x2)+ δ for some δ > 0. Then by applying
theMean Value Theorem, continuity of V (x) implies that the points
x1 and x2 must be separated by some nonzero distance. Hence, we
get strict inclusion, Sβ ⊂ Sα if β < α. □

Definition 2. Consider a continuous and radially unbounded func-
tion V : ℜ

nx → ℜ≥0. A level set Sα is controlled γ -contractive with
respect to (1) for a given γ ∈ (0, 1), if ∀xk ∈ Sα, ∃uk ∈ U such that
xk+1 ∈ Sγα .

The functions V (x) fulfilling the assumptions of Proposition 1
are natural ingredients in control designs enforcing contractive-
ness properties, as for example in the low complexity optimization
based formulation

min
uk,xk+1

1
2
xTk+1Qxk+1 +

1
2
uT
kRuk

subject to (2a)

xk+1 = Axk + Buk (2b)

Huuk ≤ 1 (2c)

V (xk+1) ≤ γV (xk) (2d)

where Q and R represent the state and input weights.
Consider next the bounded state constraints xk ∈ X with X =

{xk|Hxxk ≤ 1} where Hx ∈ ℜ
px×nx .

Proposition 2. Let V (x) be a function fulfilling assumptions A1− A3
of Proposition 1, and let V (x) = α, Then, if

(1) the corresponding level set Sα is controlled γ -contractive, and
(2) Sα ⊆ X

the control action obtained as a solution of (2) guarantees an expo-
nentially stability of the closed loopwhich in addition fulfills input and
state constraints over Sα .

Proof. Follows directly from Proposition 1 and Definition 2. □

As a result of Proposition 2, the function V (x) is a Lyapunov
function for the system (1) inside the set Sᾱ , where ᾱ = maxα such
that Sα ⊆ X .

In Hovd et al. (2014) and Munir et al. (2016), a controller based
on (2) with polytopic controlled contractive sets S = {xk|Fxk ≤ 1}
were studied based on a piecewise linear function

V (xk) = max{Fxk} (3)

Using the function specified as in (3), the optimization (2) becomes
a standard quadratic program,whichmay be solved parametrically
with xk and V (x) as parameters. This is done by imposing a virtual
parameterαk = V (xk) before solving the optimization in (2) at time
k. The constraint in (2d) then simply becomes F (Axk + Buk) ≤ γαk.
As the total number of constraints and the number of degrees of
freedom are typically quite modest in (2) compared to a classical
MPC problem utilizing a longer prediction horizon, the parametric
solution is also of modest complexity. However, this approach
suffers from the drawbacks described in the Introduction, and
this paper therefore focuses on allowing more general types of
function V (x), to obtain a larger operating region with modest
online computational complexity andmemory requirement for the
control.

In the developments below, two ellipsoidal controlled contrac-
tive sets will be important as terms of comparison:

• The set Ω = {x ∈ ℜ
nx |xTP−1x ≤ 1}, the largest controlled

γ -contractive set that can be obtained using linear state
feedback.

• The set Ωuc = {x ∈ ℜ
nx |xTP−1

uc x ≤ 1}, the ellipsoidal set
where γ -contractiveness is achieved with the linear state
feedback uk = Kucxk.

Constraints in both states and inputs are accounted for in the
calculation of both Ω and Ωuc . These sets can be calculated using
well known techniques based on Linear Matrix Inequalities, see,
e.g., Blanchini and Miani (2008) or Ngyuyen (2012) for details.

While the set Ωuc can be found for any given controller1
Kuc , for the subsequent use in this paper it will be considered to
be the unconstrained solution to (2), see the inverse optimality
arguments in Nguyen, Olaru, Rodriguez-Ayerbe, and Hovd (2014)
for the choice of weights Q and R. When ignoring the input and
contractivity constraints, (2) yields the controller

uk = −(R + BTQB)−1BTQA  
Kuc

xk

For notational convenience in the following,wewill define P1 =

P−1 and P0 = P−1
uc .

1 For subsequent developments to make sense, the controller Kuc should clearly
be designed such that the unconstrained closed loop system is γ -contractive, i.e.,
such thatmax |eig(A + BK )| ≤

√
γ .
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