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a b s t r a c t

We consider an LTI system of relative degree r ≥ 2 that can be stabilized using r − 1 output derivatives.
The derivatives are approximated by finite differences leading to a time-delayed feedback. We present
a new method of designing and analyzing such feedback under continuous-time and sampled measure-
ments. Thismethod admits essentially larger time-delay/sampling period compared to the existing results
and, for the first time, allows to use consecutively sampled measurements in the sampled-data case.
The main idea is to present the difference between the derivative and its approximation in a convenient
integral form. The kernel of this integral is hard to express explicitly but we show that it satisfies certain
properties. These properties are employed to construct the Lyapunov–Krasovskii functional that leads to
LMI-based stability conditions. If the derivative-dependent control exponentially stabilizes the system,
then its time-delayed approximation stabilizes the system with the same decay rate provided the time-
delay (for continuous-timemeasurements) or the sampling period (for sampledmeasurements) are small
enough.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Control laws that depend on output derivatives are used to
stabilize LTI systems with relative degrees greater than one. To
estimate the derivatives, which can hardly be measured directly,
one can use the finite differences, i.e., ẏ ≈ (y(t) − y(t − h))/h.
Such approximation leads to time-delayed feedback that pre-
serves the stability if the delay h > 0 is small enough (Borne,
Kolmanovskii, & Shaikhet, 2000; French, Ilchmann, & Mueller,
2009; Karafyllis, 2008). For a given h, the delay-induced stabil-
ity can be checked using frequency-domain techniques (Abdal-
lab, Dorato, & Benites-Read, 1993; Kharitonov, Niculescu, Moreno,
& Michiels, 2005; Niculescu & Michiels, 2004; Ramírez, Mondié,
Garrido, & Sipahi, 2016) or complete Lyapunov–Krasovskii func-
tionals (Egorov, 2016; Gu, Kharitonov, & Chen, 2003; Kharitonov,
2012), which give necessary and sufficient conditions.

The delay-induced stability can be also studied using linear
matrix inequalities (LMIs) (Gu, 1997; Seuret & Gouaisbaut, 2013,
2015). The advantage of LMIs is that, though being conservative,
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they allow for performance and robustness analysis, can cope with
certain types of nonlinearities (Fridman, 2014), and can deal with
stochastic perturbations (Fridman & Shaikhet, 2016, 2017). Simple
and yet efficient LMIs for the delay-induced stabilitywere obtained
in Fridman and Shaikhet (2016, 2017). The key idea was to use
Taylor’s expansion of the delayed terms with the remainders in
the integral form that are compensated by appropriate terms in
the Lyapunov–Krasovskii functional. Compared to Gu (1997) and
Seuret and Gouaisbaut (2013, 2015), the resulting LMIs have a
lower order, contain less decision variables, and were proved to
be feasible for small delays if the derivative-dependent feedback
stabilizes the system.

Another advantage of LMI-based conditions is that they can be
extended to sampled-data systems. This has been done using dis-
cretized Lyapunov functionals with a Wirtinger-based term in Liu
and Fridman (2012). Another LMIs for sampled-data stabilization
were derived in Seuret and Briat (2015) by employing impulsive
system representation and looped Lyapunov functionals. The high-
order LMIs obtained in Liu and Fridman (2012) and Seuret and Briat
(2015) contain many decision variables, which make them hard to
solve numerically. Using the ideas of Fridman and Shaikhet (2016,
2017), simple LMIs for sampled-data delay-induced stabilization
were derived in Selivanov and Fridman (in press-b). These condi-
tionswere proved to be feasible for a small enough sampling period
if the continuous-time derivative-dependent feedback stabilizes
the system.

In this paper, we essentially improve the results of Fridman and
Shaikhet (2017) for continuous-time measurements (Section 2)
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and the results of Selivanov and Fridman (in press-b) for sampled
measurements (Section 3). Namely, we derive simple LMIs that
are feasible for significantly larger values of time-delay (Remark 2)
and sampling period (Remark 3). Such improvement is achieved
using an original integral representation of the difference between
the derivative and its approximation (Proposition 1). The kernel
of this integral is hard to express explicitly but we show that it
satisfies certain properties (Proposition 2). These properties are
employed to construct Lyapunov–Krasovskii terms that bound the
approximation errors and lead to LMI-based stability conditions.
Compared to Fridman and Shaikhet (2017) and Selivanov and
Fridman (in press-b), such approach leads to amore natural design
of the controller gains in the delayed feedback. Moreover, the
considered sampled-data delayed controller uses consecutivemea-
surements, while Selivanov and Fridman (in press-b) used distant
measurements (cf. (25) and (29)). All these improvements allow to
use less memory and slower sampling when one uses time-delays
to implement derivative-dependent feedback. Finally, we show
that if the derivative-dependent controller exponentially stabilizes
the system with a decay rate α′ > 0, then the LMIs are feasible
for any decay rate α < α′ and small enough time-delay/sampling
period.

Thepart of this paper corresponding to the sampled-data imple-
mentation of the first order derivative was presented in Selivanov
and Fridman (2018). These results were used in Selivanov and
Fridman (in press-a) to study sampled-data implementation of PID
control.

Notations. N0 = N ∪ {0}, 1r = [1, . . . , 1]T ∈ Rr , Im ∈ Rm×m is the
identity matrix, ⊗ stands for the Kronecker product, diag{Ri}

r−1
i=1 is

the block-diagonal matrix with Ri being on the diagonal, 0 < P ∈

Rn×n denotes that P is symmetric and positive-definite, C i is a class
of i times continuously differentiable functions.

Auxiliary lemmas.

Lemma 1 (Exponential Wirtinger Inequality, Selivanov & Fridman,
2016). Let f : [a, b] → Rn be an absolutely continuous function
with a square integrable first order derivative such that f (a) = 0 or
f (b) = 0. Then∫ b

a
e2αt f T (t)Wf (t) dt ≤ e2|α|(b−a) 4(b − a)2

π2

∫ b

a
e2αt ḟ T (t)Wḟ (t) dt

for any α ∈ R and 0 ≤ W ∈ Rn×n.

Lemma 2 (Jensen’s Inequality, Solomon & Fridman, 2013). Let ρ :

[a, b] → [0,∞) and f : [a, b] → Rn be such that the integration
concerned is well-defined. Then for any 0 < Q ∈ Rn×n,[∫ b

a
ρ(s)f (s) ds

]T

Q
[∫ b

a
ρ(s)f (s) ds

]
≤

∫ b

a
ρ(s) ds

∫ b

a
ρ(s)f T (s)Qf (s) ds.

2. Continuous-time control

Consider the LTI system

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t),

x ∈ Rn, u ∈ Rm, y ∈ Rl (1)

with relative degree r ≥ 2, i.e.,

CAiB = 0, i = 0, 1, . . . , r − 2, CAr−1B ̸= 0. (2)

Relative degree is how many times the output y(t) needs to be
differentiated before the input u(t) appears explicitly. In particular,
(2) implies

y(i) = CAix, i = 0, 1, . . . , r − 1. (3)

To prove (3), note that it is trivial for i = 0 and, if it has been proved
for i < r − 1, it holds for i + 1:

y(i+1)
=

(
y(i)

)′ (3)
= (CAix)′

(1)
= CAi

[Ax + Bu]
(2)
= CAi+1x.

For LTI systems with relative degree r , it is common to look for a
stabilizing controller of the form

u(t) = K̄0y(t) + K̄1y(1)(t) + · · · + K̄r−1y(r−1)(t). (4)

Remark 1. The control law (4) essentially reduces the system’s
relative degree from r ≥ 2 to r = 1. Indeed, due to (2), the transfer
matrix of (1) has the form

W (s) =
βr sn−r

+ · · · + βn

sn + α1sn−1 + · · · + αn

with βr = CAr−1B ̸= 0. Taking u(t) = K̂0u0(t) + K̂1u
(1)
0 (t) + · · · +

K̂r−1u
(r−1)
0 (t), one has

ỹ(s) =
(βr sn−r

+ · · · + βn)(K̂r−1sr−1
+ · · · + K̂0)

sn + α1sn−1 + · · · + αn
ũ0(s),

where ỹ and ũ0 are the Laplace transforms of y and u0. If βr K̂r−1 ̸=

0, the latter system has relative degree one. If it can be stabilized
by u0 = Ky then (1) can be stabilized by (4) with K̄i = K̂iK .

The controller (4) depends on the output derivatives, which are
hard to measure directly. Instead, the derivatives can be approxi-
mated by finite-differences ỹi(t) ≈ y(i)(t):

ỹ0(t) = y(t),

ỹi(t) =
ỹi−1(t) − ỹi−1(t − h)

h

=
1
hi

i∑
k=0

(
i
k

)
(−1)ky(t − kh), i ∈ N

(5)

with a delay h > 0 and the binomial coefficients
( i
k

)
=

i!
k!(i−k)! .

Replacing y(i) in (4) with their approximations ỹi, we obtain the
delay-dependent control

u(t) =

r−1∑
i=0

K̄iỹi(t)
(5)
=

r−1∑
i=0

Kiy(t − ih), (6)

where we set1 y(t) = y(0) for t < 0 and

Ki = (−1)i
r−1∑
j=i

(
j
i

)
1
hj K̄j, i = 0, . . . , r − 1. (7)

If (1) can be stabilized by the derivative-dependent control (4),
then it can be stabilized by the delay-dependent control (6) with
small enough delays (French et al., 2009). In this section, we derive
simple and yet efficient LMIs that allow to obtain appropriate value
of the delay h > 0. The first step is to present the approximation
error y(i)(t)− ỹi(t) in a convenient form suitable for the analysis via
Lyapunov–Krasovskii functionals.

Proposition 1. If y ∈ C i and y(i) is absolutely continuous with i ∈ N,
then ỹi defined in (5) satisfies

ỹi(t) = y(i)(t) −

∫ t

t−ih
ϕi(t − s)y(i+1)(s) ds, (8)

1 Then y(i)(0) with i > 0 are approximated by 0.
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