Accepted Manuscript

Title: Low-temperature excess heat capacity and boson peak of mixed alkali effect in borate glass

Authors: Seiji Kojima, Hitoshi Kawaji

PII:	S0040-6031(18)30560-4
DOI:	https://doi.org/10.1016/j.tca.2018.09.018
Reference:	TCA 78102
To appear in:	Thermochimica Acta
Received date:	30-7-2018
Revised date:	19-9-2018
Accepted date:	26-9-2018

Please cite this article as: Kojima S, Kawaji H, Low-temperature excess heat capacity and boson peak of mixed alkali effect in borate glass, *Thermochimica Acta* (2018), https://doi.org/10.1016/j.tca.2018.09.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Low-temperature excess heat capacity and boson peak of mixed alkali effect in borate glass

Seiji Kojima^{a,*} and Hitoshi Kawaji^b

^aDivision of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
^bLaboratory for Materials and Structures, Tokyo Institute of Technology Yokohama, Kanagawa 226-8503, Japan

*Corresponding author. Tel.: +81-29-853-5307; Fax: +81-29-853-4490.

E-mail address: kojima@bk.tsukuba.ac.jp,

Highlights

- Excess heat capacity Cp of mixed alkali effect (MAE) of borate glass was studied.
- A broad peak of Cp /T3 with the maximum Tmax was observed in the range 5-15 K.
- The MAE was observed in the relation between the alkali cation size and Tmax.
- The MAE was observed in the universal nature of the master plot of Cp/T3.

Abstract

When two dissimilar kinds of alkaline ions are used to co-doping oxide glass, a maximum in the electric resistivity or the expansion coefficient appears, that is called the mixed alkali effect. The heat capacity C_p of several rapidly-quenched mixed alkali borate glass was measured using a relaxation calorimeter to investigate the mixed alkali effect. A broad peak of C_p/T^3 was observed with the maximum T_{max} in the range 5-15 K, which is related to the excess vibrational density of states (VDoS) of a non-Debye nature. Such a peak is called the boson peak and it is also observed as the low-energy peak of inelastic neutron and light scattering experiments. The negative deviation from the linear relation of single alkali borate glasses between the alkali cation size and T_m was clearly observed in a mixed lithium cesium borate glass. The mechanism of this deviation was discussed on the basis of the changes in the BO₄ units and the nonbridging oxygens by co-doping. The universal nature of the master plot of C_p/T^3 also shows the deviation from that of pure borate glass by the mixed alkali effect.

Keywords: Excess heat capacity; borate glass; mixed alkali effect; boson peak

1. Introduction

The structure of the pure B_2O_3 glass consists of randomly connected planar BO_3 triangles and most of the BO_3 units are connected to form boroxol rings, therefore, the coordination number of boron is three. The pure

Download English Version:

https://daneshyari.com/en/article/11027939

Download Persian Version:

https://daneshyari.com/article/11027939

Daneshyari.com