
Engineering Applications of Artificial Intelligence 76 (2018) 158–169

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Interpretable policies for reinforcement learning by genetic programming
Daniel Hein a,b,*, Steffen Udluft b, Thomas A. Runkler a,b

a Technical University of Munich, Department of Informatics, Boltzmannstr. 3, 85748 Garching, Germany
b Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, 81739 Munich, Germany

A R T I C L E I N F O

Keywords:
Interpretable
Reinforcement learning
Genetic programming
Model-based
Symbolic regression
Industrial benchmark

A B S T R A C T

The search for interpretable reinforcement learning policies is of high academic and industrial interest. Especially
for industrial systems, domain experts are more likely to deploy autonomously learned controllers if they are
understandable and convenient to evaluate. Basic algebraic equations are supposed to meet these requirements, as
long as they are restricted to an adequate complexity. Here we introduce the genetic programming for reinforcement
learning (GPRL) approach based on model-based batch reinforcement learning and genetic programming,
which autonomously learns policy equations from pre-existing default state–action trajectory samples. GPRL
is compared to a straightforward method which utilizes genetic programming for symbolic regression, yielding
policies imitating an existing well-performing, but non-interpretable policy. Experiments on three reinforcement
learning benchmarks, i.e., mountain car, cart–pole balancing, and industrial benchmark, demonstrate the
superiority of our GPRL approach compared to the symbolic regression method. GPRL is capable of producing
well-performing interpretable reinforcement learning policies from pre-existing default trajectory data.

1. Introduction

This work introduces a genetic programming (GP) approach for
autonomously learning interpretable reinforcement learning (RL) poli-
cies from previously recorded state transitions. Despite the search of
interpretable RL policies being of high academic and industrial interest,
little has been published concerning human interpretable and under-
standable policies trained by data driven learning methods (Maes et al.,
2012). Recent research results show that using fuzzy rules in batch RL
settings can be considered an adequate solution to this task (Hein et al.,
2017b, 2018b). However, in many cases the successful use of fuzzy rules
requires prior knowledge about the shape of the membership functions,
the number of fuzzy rules, the relevant state features, etc. Moreover, for
some problems the policy representation as a set of fuzzy rules might be
generally unfavorable by some domain experts. Our genetic programming
for reinforcement learning (GPRL) approach learns policy representations
which are represented by basic algebraic equations of low complexity.

The GPRL approach is motivated by typical industrial application
scenarios like wind or gas turbines. For industrial systems, low-level
control is realized by dedicated expert-designed controllers, which
guarantee safety and stability. However, we observed that high-level
control is usually implemented by default control strategies, provided
by best practice approaches or domain experts who are maintaining the
system, based on personal experience and knowledge about the system’s

* Corresponding author at: Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, 81739 Munich, Germany.
E-mail address: daniel.hein@in.tum.de (D. Hein).

dynamics. One reason for the lack of autonomously generated real-
world controllers is that modeling system dependencies for high-level
control by a first principle model is a complicated and often infeasible
approach. Since in many real-world applications such representations
cannot be found, training high-level controllers has to be performed
on data samples from the system. RL is capable of yielding high-level
controllers based solely on available system data.

RL is concerned with learning a policy for a system that can be
modeled as a Markov decision process (Sutton and Barto, 1998). This
policy maps from system states to actions in the system. Repeatedly
applying an RL policy generates a trajectory in the state–action space
(Section 3). Based on our experience, learning such RL controllers in a
way that produces interpretable high-level controllers is of high interest,
especially for real-world industry problems, since interpretable solutions
are expected to yield higher acceptance from domain experts than black-
box solutions.

In batch RL, we consider applications where online learning ap-
proaches, such as classical temporal-difference learning (Sutton, 1988),
are prohibited for safety reasons, since these approaches require explo-
ration of system dynamics. In contrast, batch RL algorithms generate a
policy based on existing data and deploy this policy to the system after
training. In this setting, either the value function or the system dynamics
are trained using historic operational data comprising a set of four-
tuples of the form (observation, action, reward, next observation), which is

https://doi.org/10.1016/j.engappai.2018.09.007
Received 27 November 2017; Received in revised form 3 April 2018; Accepted 9 September 2018
0952-1976/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.engappai.2018.09.007
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2018.09.007&domain=pdf
mailto:daniel.hein@in.tum.de
https://doi.org/10.1016/j.engappai.2018.09.007

D. Hein et al. Engineering Applications of Artificial Intelligence 76 (2018) 158–169

referred to as a data batch. Research from the past two decades (Gordon,
1995; Ormoneit and Sen, 2002; Lagoudakis and Parr, 2003; Ernst et
al., 2005) suggests that such batch RL algorithms satisfy real-world sys-
tem requirements, particularly when involving neural networks (NNs)
modeling either the state–action value function (Riedmiller, 2005a, b;
Schneegaßet al., 2007a, b; Riedmiller et al., 2009) or system dynamics
(Bakker, 2004; Schäfer, 2008; Depeweg et al., 2016). Moreover, batch
RL algorithms are data-efficient (Riedmiller, 2005a; Schäfer et al., 2007)
because batch data is utilized repeatedly during the training phase.

To the best of our knowledge, GP-generated policies have never
been combined with a model-based batch RL approach (Section 2). In
the proposed GPRL approach, the performance of a population of basic
algebraic equations is evaluated by testing the individuals on a world
model using the Monte Carlo method (Sutton and Barto, 1998). The
combined return value of a number of action sequences is the fitness
value that is maximized iteratively from GP generation to generation.

GPRL is a novel model-based RL approach, i.e., training is conducted
on an environment approximation referred to as world model. Gener-
ating a world model from real system data in advance and training
a GP policy using this model has several advantages. (i) In many
real-world scenarios, data describing system dynamics is available in
advance or is easily collected. (ii) Policies are not evaluated on the
real system, thereby avoiding the detrimental effects of executing a
bad policy. (iii) Expert-driven reward function engineering, yielding a
closed-form differentiable equation, utilized during policy training is
not required, i.e., it is sufficient to sample from the system’s reward
function and model the underlying dependencies by using supervised
machine learning.

The remainder of this paper is organized as follows. The RL and
GP methods employed in our framework are reviewed in Sections 3
and 4. Specifically, the problem of finding policies via RL is formalized
as an optimization task. In addition, GP in general and the specific
implementation that we used for experiments are motivated and pre-
sented. An overview of how the proposed GPRL approach is derived
from different methods is given in Section 5. Experiments using three
benchmark problems, i.e., the mountain car (MC) problem, the cart–pole
balancing (CPB) task, and the industrial benchmark (IB), are described
in Section 6. Experimental results are discussed in Section 7. The results
demonstrate that the proposed GPRL approach can solve the benchmark
problems and is able to produce interpretable RL policies. To benchmark
GPRL, we compare the obtained results to an alternative approach in
which GP is used to mimic an existing non-interpretable NN policy by
symbolic regression.

2. Related work

GP has been utilized for creating rule-based policies since its in-
troduction by Koza (1992). Since then, the field of GP has grown
significantly and has produced numerous results that can compete
with human-produced results, including controllers, game playing, and
robotics (Koza, 2010). Keane et al. (2002) automatically synthesized
a controller by using GP, outperforming conventional PID controllers
for an industrially representative set of plants. Another approach using
genetic algorithms for RL policy design is to learn a set of fuzzy ‘‘if-
then’’ rules, by modifying membership functions, rule sets and conse-
quent types (Juang et al., 2000). Recently, Koshiyama et al. (2014)
introduced GPFIS, a genetic fuzzy controller based on multi-gene GP,
and demonstrated the superiority in relation to other genetic fuzzy
controllers on the cart-centering and the inverted pendulum problems.
On the same benchmark, a movable inverted pendulum, Shimooka and
Fujimoto (1999) applied GP to generate equations for calculating the
control force by evaluating the individuals’ performances on predefined
fitness functions.

A fundamental drawback with all of the former methods is that
in many real-world scenarios such dedicated expert generated fitness
functions do not exist. In RL the goal is to derive well-performing

policies only by (i) interacting with the environment, or by (ii) ex-
tracting knowledge out of pre-generated data, running the system with
an arbitrary policy (Sutton and Barto, 1998). (i) is referred to as
the online RL problem, for which Q-learning methods are known to
produce excellent results. For (ii), the offline RL problem, model-based
algorithms are usually more stable and yield better performing policies
(Hein et al., 2017b).

GP in conjunction with online RL Q-learning has been used in Down-
ing (2001) on standard maze search problems and in Kamio and Iba
(2005) to enable a real robot to adapt its action to a real environment.
Katagiri et al. (2002) introduced genetic network programming (GNP),
which has been applied to online RL in Mabu et al. (2002) and improved
by Q-tables in Mabu et al. (2004). In these publications, the efficiency
of GNP for generating RL policies has been discussed. This performance
gain, in comparison to standard GP, comes at the cost of interpretability,
since complex network graphs have to be traversed to compute the
policy outputs.

Gearhart (2003) examined GP as a policy search technique for
Markov Decision Processes. Given a simulation of the Freecraft tactical
problem, he performed Monte Carlo simulations to evaluate the fitness
of each individual. Note that such exact simulations are usually not
available in industry. Similarly, in Maes et al. (2012) Monte Carlo simu-
lations have been drawn in order to identify the best policies. However,
the policy search itself has been performed by formalizing a search over
a space of simple closed-form formulas as a multi-armed bandit problem.
This means that all policy candidates have to be created in an initial step
at once and are subsequently evaluated. The computational effort to
follow this approach combinatorially explodes as soon as more complex
solutions are required to solve more complicated control problems.

3. Model-based reinforcement learning

Inspired by behaviorist psychology, RL is concerned with how
software agents ought to take actions in an environment in order to
maximize their received accumulated rewards. In RL, the acting agent
is not explicitly told which actions to implement. Instead, the agent must
learn the best action strategy from the observed environment’s rewards
in response to the agent’s actions. Generally, such actions affect both
the next reward and subsequent rewards (Sutton and Barto, 1998).

In RL formalism, at each discrete time step 𝑡 = 0, 1, 2,… , the agent
observes the system’s state 𝐬𝑡 ∈ and applies an action 𝐚𝑡 ∈ , where
 is the state space and is the action space. Depending on 𝐬𝑡 and 𝐚𝑡,
the system transitions to the next state 𝐬𝑡+1 and the agent receives a
real-value reward 𝑟𝑡+1 ∈ R. In deterministic systems the state transition
can be expressed as a function 𝑔 ∶ × → with 𝑔(𝐬𝑡, 𝐚𝑡) = 𝐬𝑡+1. The
related reward is given by a reward function 𝑟 ∶ × × → R with
𝑟(𝐬𝑡, 𝐚𝑡, 𝐬𝑡+1) = 𝑟𝑡+1. Hence, the desired solution to an RL problem is a
policy that maximizes the expected accumulated rewards.

In our proposed setup, the goal is to find the best policy 𝜋 among 𝛱
the set of all possible equations which can be built from a pre-defined
set of function building blocks, with respect to a certain maximum
complexity. For every state 𝐬𝑡, the policy outputs an action, i.e., 𝜋(𝐬𝑡) =
𝐚𝑡. The policy’s performance, when starting from 𝐬𝑡, is measured by
the return (𝐬𝑡, 𝜋), i.e., the accumulated future rewards obtained by
executing the policy 𝜋. To account for increasing uncertainties when
accumulating future rewards, the reward 𝑟𝑡+𝑘 for 𝑘 future time steps
is weighted by 𝛾𝑘, where 𝛾 ∈ [0, 1]. Furthermore, adopting a common
approach, we include only a finite number of 𝑇 > 1 future rewards in
the return (Sutton and Barto, 1998), which is expressed as follows:

(𝐬𝑡, 𝜋) =
𝑇−1
∑

𝑘=0
𝛾𝑘𝑟(𝐬𝑡+𝑘, 𝜋(𝐬𝑡+𝑘), 𝐬𝑡+𝑘+1),

with 𝐬𝑡+𝑘+1 = 𝑔(𝐬𝑡+𝑘, 𝐚𝑡+𝑘).

(1)

Herein, we select the discount factor 𝛾 such that, at the end of time
horizon 𝑇 , the last reward accounted for is weighted by 𝑞 ∈ [0, 1],
yielding 𝛾 = 𝑞1∕(𝑇−1). The overall state-independent policy performance

159

Download English Version:

https://daneshyari.com/en/article/11028877

Download Persian Version:

https://daneshyari.com/article/11028877

Daneshyari.com

https://daneshyari.com/en/article/11028877
https://daneshyari.com/article/11028877
https://daneshyari.com

