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a b s t r a c t

The covariance operator plays an important role in modern statistical methods and is
critical for inference. It is most often estimated by the empirical covariance operator. In
spite of its simple and appealing properties, however, this estimator can be improved by a
class of shrinkage operators. In this paper, we study shrinkage estimation of the covariance
operator in reproducing kernel Hilbert spaces. A data-driven shrinkage estimator enjoying
desirable theoretical and computational properties is proposed. The procedure is easily
implemented and its numerical performance is investigated through simulations. In finite
samples, the estimator outperforms the empirical covariance operator, especially when
the data dimension is much larger than the sample size. We also show that the rate of
convergence in Hilbert–Schmidt norm is of the order n−1/2. Furthermore, we establish the
minimax optimal rate of convergence over suitable classes of probability measures and
demonstrate that these shrinkage operators are all minimax rate-optimal.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

As a nonlinear tool for data analysis, the kernel method has been widely used in many applications. In nonlinear compo-
nent analysis, including kernel principal component analysis [2,22], kernel canonical correlation analysis [1,3,6] and kernel
Fisher discriminant analysis [14,32], data are represented as functions or elements in a reproducing kernel Hilbert space
(RKHS). In predictive learning tasks, kernel mean embedding is used for solving classification [18,23] and regression [27]
problems. In statistical hypothesis testing of homogeneity [10], independence [12] and conditional independence [9], as well
as in kernel-based dimensionality reduction for supervised learning [7] and regression [8], kernels offer a linear approach to
deal with higher order statistics [25]. All of these methods depend heavily on the covariance operator in RKHS and thus its
estimation is one of the most basic issues in practice.

It is assumed that (HK , ⟨·, ·⟩H) is an RKHSwith a continuous reproducing kernel K : X ×X → R defined over a separable
topological space X . A kernel mean of a probability distribution P over X is defined by a Bochner integral, viz.

µP =

∫
X
K (·, x)dP(x) ∈ HK ; (1)

see Chapter 1 in [4]. A sufficient condition for the existence of µP is
∫
X

√
K (x, x)dP < ∞; see [24]. The embedding µP

represents the expectation of functions inHK in the form of an inner product Ef (X) = ⟨µP , f ⟩H by the reproducing property.
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Moreover, under the stronger condition
∫
X K (x, x)dP < ∞, the covariance operator associated with P on HK , given, for all

f ∈ HK , by

ΣP f = E[{f (X) − Ef (X)}{K (·, X) − µP }],

is well defined and is a Hilbert–Schmidt (HS) operator; see [11]. Given a random sample X1, . . . , Xn from P , the empirical
covariance operator has often been used as a standard estimator ofΣP . It is given by

ΣPn (·) =
1
n

n∑
i=1

⟨KXi − µPn , ·⟩H(KXi − µPn ), (2)

where µPn = (KX1 + · · · + KXn )/n is the empirical average of µP and Kx = K (·, x) for any fixed x ∈ X .
It is well known that the empirical covariance operator has low bias but that its high variance leads to a high mean

square error (MSE). For this reason, many attempts have been made to improve on it using shrinkage methods. The idea of
shrinkage is to make a trade-off between bias and variance by modifying the standard empirical estimator. A basic strategy
is to increase bias and decrease the variance simultaneously in such a way as to reduce the MSE. In [19], two shrinkage
estimators called simple covariance shrinkage estimator (SCOSE) and flexible covariance shrinkage estimator (FCOSE) are
proposed based on regularization techniques. Furthermore, Ramdas et al. [21] employed them to the independence testing
problem and improved on the power of the associated independence test. These shrinkage estimators perform favorably
in finite samples, especially when the data dimension is much larger than the sample size. In high-dimensional statistics,
recent research in shrinkage methods can be found in [5,16,28].

In this paper, we show from theoretical and empirical considerations that the standard estimator is suboptimal in the
sense of MSE and that there exist estimators that can improve upon it. These estimators are constructed based on shrinkage
methods. More specifically, a linear combination of a preassigned HS operator and the standard estimator is considered.
The preassigned operator reflects our prior knowledge of covariance and determines the direction of shrinkage. Under the
HS-norm criterion, the optimal shrinkage intensity that determines the best linear combination depends on the unknown
covariance operator and it should be estimated from data. With a simple but effective estimation of the optimal shrinkage
intensity, a data-driven shrinkage estimator is proposed. This is one of this paper’s main contributions. The simulations in
Section 4 illustrate that the proposed estimator has satisfactory performance and is suitable in small-sample settings.

Another contribution of this paper is to establish the asymptotic convergence rate of the shrinkage estimator in HS-norm.
Various shrinkage estimators have been introduced which behave well in practice [16,17,28]. However, not much is known
about their theoretical properties. To comprehend the effectiveness of shrinkage methods, we establish a uniform upper
bound at the rate of n−1/2 for the shrinkage estimator under amild assumption on P . This implies that the proposed estimator
converges toΣP at the same rate asΣPn . Moreover, we study theminimax rate of convergence for estimating the covariance
operator in a reproducing kernel Hilbert space. Under mild conditions on K , we show that n−1/2 is the optimal minimax rate
by deriving minimax lower bounds over several classes of Borel probability measures. An interesting aspect of this result is
that the minimax rate is independent of the smoothness of the kernel K and the density of P . These results show that the
standard estimator and the proposed estimator are both rate-optimal.

The rest of the paper is organized as follows. In Section 2, we construct a class of shrinkage operators forΣP and propose a
completely data-driven shrinkage estimator. In Section 3, we establish a uniform upper bound for this estimator and derive
lower bounds over several classes of distributions, implying that the established bound is in fact rate sharp. In Section 4, the
performance of the proposed estimator is illustrated in some simulated examples.

In what follows, the subscript P in ΣP and µP will be dropped if the distribution is not taken into consideration. For
simplicity, the HS-norm or HK -norm is denoted ∥ · ∥ when there is no ambiguity, and KXi is simplified as Ki.

2. Shrinkage estimator

To construct an estimator of the covariance operator, it is helpful to treat it as the expectation of a rank-1 operator
Σ = E{(KX − µ) ⊗ (KX − µ)} where, for u, v ∈ HK , u ⊗ v is the rank-1 operator defined by u ⊗ v(f ) = ⟨u, f ⟩v for all
f ∈ HK . It is easily seen that u ⊗ v is an HS operator with ∥u ⊗ v∥HS = ∥u∥H × ∥v∥H; see [11]. With this notation, the
empirical covariance operator in (2) can be rewritten as

ΣPn =
1
n

n∑
i=1

(Ki − µPn ) ⊗ (Ki − µPn ).

AsΣPn is a biased estimator, it is sometimes replaced by the sample covariance operator Σ̃ = nΣPn/(n − 1).
Generally speaking, a shrinkage estimator is a combination of an estimator with low bias but high variance and another

estimator with high bias but low variance. As Σ̃ is an unbiased estimator, given a deterministic HS operatorΣ∗ on HK and
a shrinkage parameter α, we consider the shrinkage estimator defined, for all α ∈ R, by

Σ̂α = αΣ∗
+ (1 − α)Σ̃ .

The choice ofΣ∗ is arbitrary but independent of the sample. It is obvious that this shrinkage estimator pulls the rawestimator
Σ̃ towardΣ∗ by an amount specified by α. If α = 0, then Σ̂α = Σ̃; if α = 1/n andΣ∗

= 0, Σ̂α reduces toΣPn .
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