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A B S T R A C T

Mass spectral data exhibit a small number of signals (true peaks) among many noisy observations (signals or true
peaks) in a high-dimensional space. This unique aspect of mass spectral data necessitates solving the problem of
testing for many composite null hypotheses simultaneously. In this study, we develop a new procedure to control
the false discovery rate of simultaneous multiple hypothesis tests, consisting of many “bivariate” composite null
hypotheses. Two types of composite null hypothesis, the intersection-type and the union-type null, are considered
separately. The proposed procedure comprises two stages. In the first stage, we simultaneously test each “uni-
variate” simple hypothesis of “bivariate” composite hypotheses at the pre-decided false discovery rate. In the
second stage, we combine the marginal univariate test results so that the two-dimensional false discovery rate for
the “bivariate” composite null hypotheses is less than the desired significance level α. The new procedure provides
a closed-form decision rule on the bivariate test statistics, unlike existing methods for controlling the two-
dimensional local false discovery rate (2d-fdr). We numerically compare the performance of our procedure to
existing 2d-fdr control methods in different settings. We then apply the procedure to the problem of differenti-
ating the origins of herbal medicine using gas chromatography-mass spectrometry.

1. Introduction

High-dimensional spectral data are widely used in various biological
and medical disciplines. Examples include near infrared spectral (NIR)
data, nuclear magnetic resonance (NMR) data, liquid chromatography
mass spectral (LC/MS) data, and gas chromatography mass spectral (GC/
MS) data. NMR is used to observe the magnetic properties of the energy
absorbed and re-emitted from an atomic nucleus, which is used to
identify compounds in a given sample mixture [2–4]. Mass spectrometry
(MS) ionizes chemical compounds and measures the mass-to-charge ra-
tios of charged particles (ion fragments), and is popular in many
bio-analytical sectors [5–7].

A mass spectrometry raw data set consists of true meaningful peaks
(of interest) and noisy peaks. Clearly, the number of true and noisy peaks
depend on the study sample. To find significant true peaks, various
methodologies have been developed to pre-process the raw data (e.g.,
peak detection, peak normalization, and peak merging) [8,9]. Further-
more, the raw data usually contain unwanted local or global peak shifts
due to instrumental instability or small differences in experimental

conditions. Because a mis-alignment over samples weakens the strength
of the signals, the spectrummust be aligned prior to an analysis [10–20].

Following the advances in pre-processing technologies, the focus in
the MS field has shifted to statistical issues such as biomarker metabolite
discovery and metabolite-metabolite network construction. Even though
multiple testing has attracted much attention in terms of identifying
significant metabolites or biomarkers, statistical analyses of MS data are
relatively rare compared with those of other high-throughput data. One
reason for this is that MS data require many pre-processing steps. A
second, more important reason is that the conventional multiple testing
approach is not able to find significant metabolites with a small variance,
producing too many false positives. To overcome these disadvantages of
the conventional t-test, many variations have been developed. The var-
iations typically address the small variance in two different ways,
namely, from a frequentist and an empirical Bayes perspective [21–25].
For example, one approach adds a constant to the small standard error of
the sample mean difference [21,25]. In other instances, the posterior
mean of the variance obtained using a χ2 prior is considered as the
standard error [22,24].
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Because there is a limitation on possible improvements to the single
test statistic (modified t-statistic), a different solution to the small vari-
ance problem was suggested by Ploner et al. [1]. They suggested using a
two-dimensional statistic to improve the performance of multiple testing,
by applying a different cutoff rule to the modified t-statistic depending on
the size of the variance. In other words, a different amount of fudge factor
is added to the observed standard error, reducing the number of false
positives. They also provide a corresponding 2d-fdr approach, which can
be easily extended to a multi-dimensional case. Estimated fdr isolines
(log se vs. t-statistic) are smoothed and cropped to the convex hull of the
observed statistics. Tornado and volcano plots, which use a different
x-axis (mean difference instead of the t-statistic), are employed to
graphically show that significance depends on the magnitude of both the
mean difference and its standard error. However, both plots have sin-
gularity problems that make it difficult to smooth the lines. Furthermore,
the estimated fdr isolines are not explicitly represented in mathematical
form.

In this paper, we propose new procedures to control the two-
dimensional false discovery rate in the simultaneous testing of many
bivariate composite hypotheses. We consider two types of (bivariate)
composite null hypothesis, intersection-type null hypotheses and union-
type null hypotheses, and develop procedures appropriate for each type
of composite hypothesis. The proposed procedures (for both types of
composite null hypotheses) comprise two stages. In the first stage, we
simultaneously test each “univariate” simple hypothesis of bivariate
composite hypotheses at the pre-decided FDR level. Of the many pro-
cedures available for multiple testing with univariate test statistics, we
adopt the local false discovery rate procedure of Efron et al. [21] in the
first stage of our procedure. In the second stage, we combine themarginal
univariate test results so that the two-dimensional false discovery rate for
the bivariate composite null hypotheses is less than the desired signifi-
cance level, α. The combining rule for the intersection-type composite
hypothesis is the same as the Bonferroni correction. Specifically, we
apply a univariate FDR procedure to test each simple hypothesis at the
levels α1 and α2, with α1 þ α2 ¼ α. We then reject an individual hy-
pothesis if it is rejected by either of the two univariate FDR procedures.
The combining procedure for the union-type composite hypothesis is
rather complex, and will be explained later. Compared with the existing
two-dimensional FDR procedures [1,26], our proposed procedure dif-
ferentiates between the types of composite null hypotheses and provides
a closed-form decision rule on the bivariate test statistics. Accordingly,
the decision on significance for a new object is easily made using the
explicit rejection region.

In the next section, we introduce our two-stage procedures for the two
types of composite null hypotheses. In Section 3, we numerically
compare the performance of our procedure to that of two other 2d-fdr
procedures [1,26]. In the numerical comparison, we first consider the
union-type composite null hypotheses, which is more appropriate for the
comparison with the method of Ploner et al. [1]. We then consider the
intersection composite null for the comparison with the approach of
Alishahi et al. [26]. In Section 4, we apply our procedure to the problem
of identifying the origins of a herbal medicine using gas
chromatography-mass spectral data. In Section 5, we conclude with a
brief summary of the paper.

2. Two-stage procedure to control the FDR in two dimensions

2.1. Procedure for the intersection composite null

We first introduce a procedure for testing intersection-type composite
null hypotheses simultaneously. Suppose, for j ¼ 1;2;…; J, the j-th in-
dividual hypothesis is of the form

H j:0 ¼ H j:01 \ H j:02;

where hypotheses H j:01 and H j:02 are tested using statistics T1 and T2,

respectively. The FDR control procedure we propose is similar to the
Bonferroni correction for the multiple testing error:

1. Set positive levels α1 and α2 as α1 þ α2 ¼ α.
2. For T1 and T2, marginally test the hypotheses at the FDR levels α1 and

α2, respectively, and find the index where the tests reject either hy-
pothesis. Let the set of indices of such hypotheses be K .

3. Reject the hypothesis H j:0; j 2 K .

Below, we show how the above procedure controls the FDR, the ex-
pected proportion of false rejections among total rejections, such that it is
less than α. Table 1 shows the number of hypotheses for all four com-

binations of the testing results of the J ¼ nþþþþð¼
P1
i¼0P1

j¼0
P1

k¼0
P1

l¼0nijklÞ hypotheses. We make an independent Poisson
assumption for each number (our count) nijkls, with rates Jλijkl. Then,
given J, the conditional distribution of the vector of nijkls is the multi-
nomial distribution with success probabilities πijkl ¼ λijkl=

P
ijklλijkls. The

four combinations consist of the truth (TR) and action (A) corresponding
to the first and second hypothesesH j:01 andH j:02; “0” or “1” indicate the
null or alternative hypothesis on TR and A, respectively.

In the procedure above, we separately control the FDR for one-
dimensional multiple testing for H j:01 and H j:02. The control of the
FDR for testing the hypotheses fH j:01; j ¼ 1; 2;…; Jg implies

E
�
n0þ1þ
nþþ1þ

�
� α1: (1)

Similarly, the FDR control for the hypotheses fH j:02; j ¼ 1;2;…; Jg
implies

E
�
nþ0þ1

nþþþ1

�
� α2: (2)

If the above two are satisfied, then we have

E
�
# of false rejections

# of rejections

�
¼ E

�
n0011 þ n0010 þ n0001

nþþ11 þ nþþ10 þ nþþ01

�
� α1 þ α2: (3)

We show that Equation (3) holds; that is, combining (1) and (2) im-
plies (3):

n0011 þ n0010 þ n0001
nþþ11 þ nþþ10 þ nþþ01

� 2n0011 þ n0010 þ n0001
nþþ11 þ nþþ10 þ nþþ01

¼ n0011 þ n0010
nþþ11 þ nþþ10 þ nþþ01

þ n0011 þ n0001
nþþ11 þ nþþ10 þ nþþ01

� n0þ1þ
nþþ1þ þ nþþ01

þ nþ0þ1

nþþþ1 þ nþþ10

¼ nþþ1þ
nþþ1þ þ nþþ01

� n0þ1þ
nþþ1þ

þ nþþþ1

nþþþ1 þ nþþ10
� nþ0þ1

nþþþ1

� n0þ1þ
nþþ1þ

þ nþ0þ1

nþþþ1
:

Table 1
All possible combinations of truths (TR) and actions (A).

TR1 TR2 A1 A2 count TR1 TR2 A1 A2 count

0 0 0 0 n0000 1 0 0 0 n1000
0 0 0 1 n0001 1 0 0 1 n1001
0 0 1 0 n0010 1 0 1 0 n1010
0 0 1 1 n0011 1 0 1 1 n1011
0 1 0 0 n0100 1 1 0 0 n1100
0 1 0 1 n0101 1 1 0 1 n1101
0 1 1 0 n0110 1 1 1 0 n1110
0 1 1 1 n0111 1 1 1 1 n1111
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