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a b s t r a c t 

A broader range of analytical tools can enhance understanding of the unusual mechanical properties of meta- 

materials and other advanced material systems. Here, we discuss a mechanics analogue of the Parseval’s energy 

theorem that leads to a density of the strain energy in the reciprocal space. It reflects the ways for an elastic 

medium to translate static deformation patterns between two points in space. A normalized spectral density also 

provides an information entropy of deformation at those points. Both differential and discrete (numerical) en- 

tropies of the Shannon’s type are discussed. Spectral entropy is a basic measure of information available in the 

material interior about surface loads, or a measure of disorder introduced into elastic medium by the deforma- 

tion. An exact analytical entropy function is derived for an isotropic plane solid under Gauss-distributed and 

point loads. Approaches to numerical calculation of spectral entropy in computational solid mechanics are also 

discussed. Energy spectral density and spectral entropy of an elastic continuum is shown to translate, logically, 

in agreement with the Saint-Venant’s principle. However, it also becomes clear that microstructured media may 

demonstrate anomalous pathways of evolution of the strain energy spectrum, enabling interesting transformation 

mechanics studies of engineered material systems. 

1. Introduction 

Recent advances in mechanical metamaterials create interesting op- 

portunities for the control of strain energy distribution in deformable 

bodies. Mechanical metamaterials [1–10] are structural composites that 

manifest behaviors beyond the scope of traditional mechanics of materi- 

als, including negative elastic moduli [1–7] and basic symmetries break- 

ing [8,9] . Identification of dangerous stress and strain profiles in au- 

tonomous materials systems, and pre-programmed processing and mod- 

ification of surface loads in the materials interior are some examples 

of their potentially diverse applications. In a broader sense, control and 

analysis of spectral content of static deformation is an interesting subject 

that has been widely overlooked in materials mechanics. In this paper, 

we demonstrate a mechanics analogue of the Parseval’s theorem from 

the field of information theory and signal processing. This theorem gives 

a strain energy spectral density (SESD), whose spatial evolution provides 

a fundamental insight on how mechanical stresses are transformed and 

modified in the material interior. The strain energy spectral density also 

enables a straightforward calculation of a spectral entropy of static de- 

formation and its variance with distance to loads. Spectral entropy is 

a measure of smoothness of the energy spectrum and therefore can in- 

dicate proximity of defects in the material, or unusual and potentially 

hazardous load patterns. We also show that the spectral entropy has a 
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simple relation to the Shannon’s information entropy [11,12] , and there- 

fore, it can serve as a measure of information contained in the material 

deformation about any available surface and volume forces. 

Spectral energy density and the corresponding spectral entropy of 

deformation for a Gauss-type pressure load acting on surface of a plane 

solid are derived analytically as functions of distance to the load. A 

discussion is also provided on approaches to numerical calculation of 

the spectral entropy in general solid mechanics problems. The reader 

will clearly see what information is contained in mechanical deforma- 

tion of a homogenous elastic continuum, and how it changes when 

the strain energy spectrum evolves in the material interior with dis- 

tance to the surface load. Also, approaches presented here can be ex- 

tended to analyze energy and entropic properties of various classes of 

advanced microstructured materials, and even mechanical metamateri- 

als, including those featuring the non-reciprocity of mechanical defor- 

mation [9] and the Saint-Venant’s effect reversal [8] . These material 

systems may demonstrate anomalous strain energy transformation ca- 

pabilities and enable a wide range of interesting practical opportunities. 

2. Parseval’s theorem and strain energy spectral density 

A mechanics version of the Parseval’s theorem, also known as en- 

ergy theorem of the Fourier transform, see references [13–15] and Eq. 

( A.1 ) in Appendix, can be written in a variety of ways. For example, we 
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could consider a standard volumetric or spatial density of strain energy 

for an arbitrary plane stress problem, as a quadratic form of the strain 

components, 

𝑊 ( 𝑥, 𝑦 ) = 

1 
2 
𝛆 ∗ ( 𝑥, 𝑦 ) 𝐄𝛆 ( 𝑥, 𝑦 ) (1) 

where E is a constitutive matrix ( A.15 ), and 𝜺 ∗ is a conjugate transpose 

of the vector of strain components, 

𝛆 ( 𝑥, 𝑦 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝜀 𝑥 ( 𝑥, 𝑦 ) 
𝜀 𝑦 ( 𝑥, 𝑦 ) 
𝛾𝑥𝑦 ( 𝑥, 𝑦 ) 

⎫ ⎪ ⎬ ⎪ ⎭ 
(2) 

and then integrate (1) over the y -coordinate, 

Π( 𝑥 ) = 

∞∫
−∞

𝑊 ( 𝑥, 𝑦 ) 𝑑𝑦 (3) 

This integral gives a distribution of the strain energy in the x -axis 

direction. We may represent the vector (2) via the inverse Fourier trans- 

form ( A.3 ) of its own Fourier image ( A.2 ), 

�̃� ( 𝑥, 𝑞 ) = 

∞∫
−∞

𝛆 ( 𝑥, 𝑦 ) 𝑒 − 𝑖𝑞𝑦 𝑑𝑦 (4) 

and rewrite (3) as the following: 

Π( 𝑥 ) = 

1 
8 𝜋2 

∞∫
−∞

( ∞∫
−∞

�̃� ∗ 
(
𝑥, 𝑞 ′

)
𝑒 − 𝑖𝑞 

′𝑦 𝑑𝑞 ′
) 

𝐄 

( ∞∫
−∞

�̃� ( 𝑥, 𝑞 ) 𝑒 𝑖𝑞𝑦 𝑑𝑞 
) 

𝑑𝑦 (5) 

Next, rearrange this expression by changing the integration order, 

Π( 𝑥 ) = 

1 
8 𝜋2 

∞∫
−∞

∞∫
−∞

( ∞∫
−∞

𝑒 − 𝑖𝑞 
′𝑦 𝑒 𝑖𝑞𝑦 𝑑𝑦 

) 

�̃� ∗ 
(
𝑥, 𝑞 ′

)
𝐄 ̃𝛆 ( 𝑥, 𝑞 ) 𝑑 𝑞𝑑 𝑞 ′

= 

1 
4 𝜋

∞∫
−∞

∞∫
−∞

𝛿
(
𝑞 − 𝑞 ′

)
�̃� ∗ 
(
𝑥, 𝑞 ′

)
𝐄 ̃𝛆 ( 𝑥, 𝑞 ) 𝑑 𝑞𝑑 𝑞 ′

(6) 

Here, 𝛿 is the Dirac’s delta function (Eqs. A.8 ) and (A. (9) ) which 

removes the integral over q ′ and gives finally 

Π( 𝑥 ) = 

1 
4 𝜋

∞∫
−∞

�̃� ∗ ( 𝑥, 𝑞 ) 𝐄 ̃𝛆 ( 𝑥, 𝑞 ) 𝑑𝑞 (7) 

A comparison of (3) and (7) proves the strain energy spectral theo- 

rem: An integral of strain energy volumetric density W is equal to a Fourier 

integral of strain energy spectral density �̃� . Equivalently, an integral over a 

quadratic form of strain components is equal to an integral over the quadratic 

form of Fourier transforms of these strain components: 

∞∫
−∞

𝑊 ( 𝑥, 𝑦 ) 𝑑 𝑦 = 

1 
2 𝜋

∞∫
−∞

�̃� ( 𝑥, 𝑞 ) 𝑑 𝑞 (8) 

𝑊 ( 𝑥, 𝑦 ) = 

1 
2 
𝛆 ∗ ( 𝑥, 𝑦 ) 𝐄𝛆 ( 𝑥, 𝑦 ) (9) 

�̃� ( 𝑥, 𝑞 ) = 

1 
2 
�̃� ∗ ( 𝑥, 𝑞 ) 𝐄 ̃𝛆 ( 𝑥, 𝑞 ) (10) 

The strain energy spectral density (SESD) function, �̃� ( 𝑥, 𝑞 ) , is a very 

interesting characteristic of a state of deformation. Dependence of this 

function on q shows a spectral density (spectral distribution) of the 

strain energy, and it tells us how much strain energy is contained in 

the wavenumber interval from q to q + dq . Furthermore, its dependence 

on x determines how this spectral density transforms from one point in 

space to another. 

Considering a general three-dimensional energy density W ( x, y, z ) 

and applying single or multiple integrals similar to (3) , we may also get 

functions of the type �̃� ( 𝑥, 𝑦, 𝑞 ) , as well as �̃� ( 𝑥, 𝑞 1 , 𝑞 2 ) and a full trans- 

form �̂� ( 𝑞 1 , 𝑞 2 , 𝑞 3 ) under a double or triple Fourier integral in (8) . Exam- 

ples are shown in Appendix (Eqs. (A.10–A.12) ). The function �̃� ( 𝑥, 𝑞 1 , 𝑞 2 ) 
will show a two-dimensional spectral distribution of the strain energy 

contained in the layer ( x, x + dx ) of the material. However, in the analy- 

sis of material responses to surface loads, strain energy spectral density 

of the type (10) or ( A.11 ) depending on a single coordinate, as a distance 

to the loads, will be most interesting in the practice of transformation 

mechanics studies. 

For the discussion to follow, we also introduce the normalized spatial 

( 𝑤 ) and spectral ( ̃𝑤 ) densities, 

𝑤 ( 𝑥, 𝑦 ) = 

𝑊 ( 𝑥, 𝑦 ) 
Π( 𝑥 ) 

(11) 

�̃� ( 𝑥, 𝑞 ) = 

1 
2 𝜋

�̃� ( 𝑥, 𝑞 ) 
Π( 𝑥 ) 

(12) 

such that 
∞∫

−∞
𝑤 ( 𝑥, 𝑦 ) 𝑑 𝑦 = 

∞∫
−∞

�̃� ( 𝑥, 𝑞 ) 𝑑 𝑞 = 1 (13) 

Transformation or evolution of the strain energy spectral density in 

space (with the coordinate x ) will be specific to a given material, and 

a recent study [8] shows that microstructured materials may be highly 

selective to certain spectral components of their deformation patterns. 

In particular, some Fourier modes may dissipate unexpectedly fast in 

the material volume or even get localized on the surface. The present 

formalism can help to understand these interesting behaviors, and in 

Section 6 , we initiate the discussion by considering an isotropic contin- 

uum as a reference case. 

3. Differential spectral entropy 

Knowledge of a normalized spectral density of strain energy (12) en- 

ables us to determine the corresponding spectral entropy. Strain energy 

spectral entropy (SESE) , as a function of the coordinate x , can be written 

using the Shannon’s definition of differential entropy [11,12] , 

𝑆 ( 𝑥 ) = − 

∞∫
−∞

�̃� ( 𝑥, 𝑞 ) ln �̃� ( 𝑥, 𝑞 ) 𝑑𝑞 (14) 

The functional S is a measure of complexity of the strain field , or a mea- 

sure of disorder introduced to the elastic continuum by mechanical forces . 

The strain energy spectral entropy (14) will generally be higher near 

stress concentrators, localized surface loads or a physical inhomogeneity 

in the form of voids, cracks and secondary phase inclusions. Indeed, 

stress concentrators give volumetric strain energy density functions W 

highly localized in space, whose reciprocal space counterpart �̃� , on 

the contrary, will be a smooth function of the wavenumber q . Although 

�̃� is not a Fourier transform of W , this example is insightful: Fourier 

transform of a Gaussian function is also a Gaussian function, but with 

an inverse width, 

�̃� 𝐺 ( 𝑞 ) = 

1 
2 𝜋

∞∫
−∞

𝑒 
− 𝑎 

2 𝑦 2 
2 𝑒 − 𝑖𝑞𝑦 𝑑𝑦 = 

1 
𝑎 
√
2 𝜋

𝑒 
− 𝑞 

2 

2 𝑎 2 (15) 

In simple terms, a narrow function in the coordinate space gener- 

ally corresponds to a wide function in the reciprocal space, and vice 

versa. We further note that differential entropy of the normal distribu- 

tion (15) is a logarithmic function of its width a , 

𝑆 𝐺 = − 

∞∫
−∞

�̃� 𝐺 ( 𝑞 ) ln �̃� 𝐺 ( 𝑞 ) 𝑑𝑞 = ln 
(
𝑎 
√
2 𝜋𝑒 

)
(16) 

Therefore, theoretical range of the differential entropy integral 

(14) is from –∞ to ∞, when the width a of the normal distribution varies 

from 0 to ∞. Moreover, if the material coordinates are not dimension- 

less originally, the function �̃� ( 𝑥, 𝑞 ) will have a physical dimensionality 

of length. Then, a dimensionless coordinate y / Λ should be introduced 

leading to a scaling factor 1/ Λ for �̃� ( 𝑥, 𝑞 ) , and because of the negative 

logarithm in (14) and property (13) , this will produce a shift of the en- 

tire entropy function (14) by a constant proportional to ln Λ. Thus, only 

a relative change of the differential entropy (14) between two points in 

a coordinate space can have a physical meaning, while its absolute value 

will generally depend on a physical scaling of that coordinate space. 

4. Numerical entropy calculation 

Fortunately, the unlimited range of the differential entropy of me- 

chanical deformation (14) , varying from –∞ to ∞, and uncertainty of 
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