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The affine projection (AP) algorithm is one of the most celebrated adaptive filtering algorithms, and 
it achieves a good tradeoff between the convergence rate and computational complexity. However, the 
complexity of the AP algorithm increases with the projection order. A wealth of fast AP algorithms have 
been proposed to reduce the complexity in the last two decades. However, those low-complexity methods 
have not been well analyzed and compared. To fill this gap, this paper reviews the fast AP algorithms, 
including both fast filtering approaches and efficient solutions of the linear system of equations. The 
advantages and disadvantages of each fast implementation version are clarified based on an extensive 
performance evaluation, which could be useful to engineers when selecting a suitable algorithm for their 
specific applications and could also be a starting point for experts in this field to develop better solutions.

© 2018 Published by Elsevier Inc.

1. Introduction

Since the least-mean-square (LMS) algorithm was invented by 
Widrow and Hoff [1], many adaptive filters have been developed 
and widely used in many applications [2–5]. A good adaptive fil-
tering algorithm should have a fast initial convergence rate, low 
steady-state misalignment, good tracking capability, robustness to 
disturbances, low latency, low complexity, and good numerical sta-
bility. It is difficult to design one algorithm that attains all of 
those features. The classic time-domain adaptive algorithms, such 
as the LMS, the affine projection (AP), and the recursive least 
squares (RLS) algorithms, are generally applied in adaptive filters. 
The LMS algorithm and its normalized version, i.e., the normalized 
LMS (NLMS) algorithm, have low complexity, but the LMS algo-
rithm suffers from slow convergence for highly correlated signals. 
In contrast, the RLS algorithm exhibits very good convergence per-
formance, but its complexity is rather high for long adaptive filters. 
For instance, the most efficient version of the RLS algorithm, i.e., 
the stabilized fast transversal filter (FTF) algorithm, still requires 
O(8L) operations (L being the length of the filter), and it suffers 
from numerical difficulties [3,5]. The AP algorithm [6–8] achieves a 
good tradeoff between the computational complexity and the con-
vergence performance. The convergence rate of the AP algorithm 
is much faster than that of the LMS algorithm especially for corre-

* Corresponding author at: Key Laboratory of Noise and Vibration Research, Insti-
tute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China.

E-mail address: jyang@mail.ioa.ac.cn (J. Yang).

lated inputs,1 and the complexity of the fast AP algorithm is only 
slightly higher than that of the LMS algorithm and is much lower 
than that of the RLS algorithm. Thus, the AP algorithm provides 
a link between the computationally intensive algorithms (e.g., the 
RLS algorithm) and the simple LMS algorithm.

Due to its good convergence and medium complexity, the AP al-
gorithm has been widely used in various applications, such as echo 
cancellation [10–12], active noise control (ANC) [13–16], noise re-
duction [17], system identification [18,19], beamformer [20–22], 
acoustic feedback cancellation [23–25], among others. The statis-
tical convergence behavior of the AP algorithm was extensively 
studied in [26–38]. A good overview of the AP algorithm can be 
found in [39].

However, the complexity of direct implementation of the AP al-
gorithm increases as the projection order increases, and hence, its 
complexity is still prohibitive for a large projection order and a 
long adaptive filter. The complexity of the AP algorithm stems from 
three operations, i.e., calculation of the error vector, update of the 
weight vector, and the matrix inversion operation. In the last two 
decades, many efforts have been made to reduce the complexity 
of the AP algorithm, and a wealth of fast AP algorithms have been 
developed, which mainly resort to the time-shift properties of the 
input signal and the input signal matrix.

1 As one of the reviewers mentioned that the convergence gain of the AP al-
gorithm over the LMS/NLMS is not very impressive for a white Gaussian noise as 
input. For instance, it was found in [9] that the NLMS and AP have almost the same 
convergence rate when the input is white noise.
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The first approach toward the complexity reduction of the AP 
algorithm is to update an auxiliary weight vector instead of the 
true weight vector [40–49]. By exploiting the time-shift structure 
of the input signal matrix, the adaptive weight vector can be ex-
pressed as the sum of an auxiliary weight vector and a matrix-
vector product. If only the error signal is required, as in some 
applications such as echo control and ANC, it is sufficient to update 
the auxiliary weight vector with a complexity of O (L) multiplica-
tions per sample. Fast filtering approaches have been presented in 
the literature [40,41,50,51]. An approximate filtering approach was 
presented in [40,41], where only the first element of the error vec-
tor is exactly computed, and the others are approximated using the 
previous error vector. The calculation of the error vector requires 
only L multiplications per sample instead of the needed P L mul-
tiplication in the original AP algorithm, where P stands for the 
projection order. Because the fast approximate filtering approach 
is based on an implicit “small regularization parameter” assump-
tion [41], it is not exactly equal to the standard AP algorithm. To 
address this problem, a fast exact filtering approach to the AP al-
gorithm was then presented in [50,51], where the calculation of 
the filtering-out vector requires L + P 2 multiplications per sam-
ple. Without considering the matrix inversion operation, the fast 
implementations of the AP algorithm can be classified into four 
categories:

• Fast approximate filtering with update of the auxiliary weight 
vector [40,41], which is called the fast affine projection (FAP),2

requiring 2L multiplications per sample.
• Fast approximate filtering with update of the original weight 

vector, requiring (P + 1)L multiplications per sample.
• Fast exact filtering with update of the auxiliary weight vector 

[51], requiring 2L multiplications per sample.
• Fast exact filtering with update of the original weight vector, 

requiring (P + 1)L multiplications per sample [50].

When the step size is close to one, the error vector in the FAP 
algorithm can be approximated by a vector in which only the 
first entry is non-zero, namely, the simplified FAP (SFAP) algorithm 
[52–55]. The complexity in the SFAP algorithm can then be further 
reduced compared to the original FAP. Additionally, the pseudo AP 
(PAP) algorithm [56–69] will be briefly reviewed, although it is not 
a fast version of the AP algorithm; it is simply a variation of the 
AP algorithm. Specifically, we will prove that three versions of the 
PAP update equation in [56,58] and [60] are indeed mathematically 
equivalent.

The accuracy of the matrix inversion has a large effect on the 
convergence performance of the AP algorithm, and, indeed, it af-
fects the stability of the entire algorithm. Four types of matrix 
inversions have been presented in the literature. The first type 
presents an exact solution of the matrix inversion, e.g., the LDLT

factorization [70,71], the displacement method [72–74], the RLS al-
gorithm [75–79], the fast RLS (FRLS) algorithm [40,41,82,83], and 
Schur complement-based algorithm [80,81]. The second type ap-
proximates the correlation matrix as a Toeplitz matrix and then 
several fast algorithms, e.g., the Levinson recursion [84], the Durbin 
algorithm [85] and the Ratchet algorithm [86,87] can be adopted. 
However, it was observed in [88] that the condition number of 
the Toeplitz matrix may be much larger than that of the origi-
nal correlation matrix, which leads to instability. Motivated by the 
schemes used in speech coders [89–92], a modified Toeplitz matrix 

2 Exactly speaking, the term ‘FAP’ can be used to describe any fast implementa-
tions of the AP algorithm. However, because FAP has been specifically associated 
with the fast approximate filtering approach without an explicit update of the 
weight vector in [41] and was followed in the literature, we use FAP to denote 
the fast algorithm in [40,41] and its variations for consistency.

structure was presented in [88] to improve the stability of the ma-
trix inversion algorithm. The third type includes several iterative 
methods, such as the Gauss–Seidel (GS) [93–96], conjugate gradi-
ent (CG) [97–99] and the dichotomous coordinate descent (DCD) 
[100–107] algorithms. Additionally, an approximate matrix inver-
sion method was presented using orthogonal transforms [108], 
and the discrete cosine transform (DCT) transform was explored 
[109–113]. The step size and the regularization parameter in the 
AP algorithm provide a tradeoff between the convergence rate 
and steady-state misalignment. A formula for choosing the con-
stant regularization parameter of the AP algorithm was presented 
in [114–116], which is related to the signal-to-noise ratio (SNR). 
Many variable step-size and variable regularization-parameter AP 
algorithms have been developed [117–122]. The aforementioned 
fast algorithms hold for a variable step size, but not all fast imple-
mentation versions can adopt a variable regularization parameter. 
Various evolving-order AP algorithms have also been presented to 
achieve both fast convergence speed and small steady-state mis-
alignment [123–129].

Block implementations of the AP algorithm were presented in 
[48,130–132]. A fast exact block implementation of the fast AP al-
gorithm was proposed in [131], although this block version is not 
exactly equal to the standard AP algorithm because it is based on 
the fast approximate filtering scheme. Subsequently, a fast exact 
block version of the standard AP algorithm was presented in [132], 
which has a complexity that is comparable to the block version 
in [131]. The complexities of the two block versions could be re-
duced by employing the fast FIR filtering approach [133,134]. In 
this paper, however, we adopt the scheme in [48] to describe the 
block exact FAP algorithm because we found that this approach can 
be treated as a straightforward extension of the sample-by-sample 
FAP algorithm to the block case, and it is easy to follow. We then 
extend this approach to the fast exact filtering method by updating 
the auxiliary weight vector [51], which leads to a block fast exact 
AP algorithm that is equivalent to the method in [132]. The sub-
band adaptive filtering technique has been widely used to reduce 
the complexity and improve the convergence rate [135]. The AP 
algorithm can be used in an individual subband to further whiten 
the received input signal with a relatively small projection order 
[136,137], which is promising in practice.

However, all of the aforementioned fast AP algorithms are scat-
tered throughout the literature and have not been comprehensively 
compared and analyzed. Hence, engineers may still not know 
which fast version is optimal for their specific applications. We be-
lieve that the field has reached a maturity that allows us to write 
such a review on the low-complexity implementation of the AP al-
gorithm. In this paper, we first present a thorough overview of all 
the fast implementations of the AP algorithm. We then evaluate 
the complexity and performance of each fast version and indi-
cate their advantages and limitations. Necessary derivations are 
provided to make the paper logical and systematic so that both 
engineers and experts in this field can benefit from this contribu-
tion.

Throughout this paper, matrices and vectors are denoted by up-
percase and lowercase bold fonts, respectively, e.g., R and r, and 
scalars are denoted by italics. All vectors are defined as column 
vectors; row vectors are represented by transposition. The lower-
case letter denotes the time index, which is placed in parentheses. 
The elements of the matrix and vector are denoted as [R]i, j and 
[r]i . The p-th column of R is denoted as R(p) . Superscript T de-
notes the transpose operator, and E{·} denotes the mathematical 
expectation. The notation diag{·} is used to form a diagonal ma-
trix of the augment of the operator, and ‖·‖ denotes the Euclidean 
norm. The notation I denotes the identity matrix, and 0 stands for 
the zero matrix or the all-zero vector.
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