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A B S T R A C T

In this contribution, the structural long-term response of a square block foundation resting on a soil layer over
rigid bedrock is investigated in the time domain. To efficiently predict the vertical displacement of the square
block foundation at periodic loading, a time homogenization technique is employed to deal with different time
scales in the response of the soil-foundation system and its long-term evolution due to the foundation's inelastic
and nonlinear material behavior (continuous damage, discontinuous damage, viscoelastic, elastoplastic). To
correctly represent the laterally unbounded soil layer over rigid bedrock, the stiffness of the linear elastic soil is
first computed in the frequency domain via the modified scaled boundary finite element method. The soil
stiffness in the frequency domain is then transferred to the time domain via a lumped-parameter model re-
presentation. Subsequently, the time homogenization technique including dynamic effects is developed and
applied to obtain the response of the foundation-soil system in the time domain. Consolidation of the soil layer
(linear elastic) is not addressed in this contribution.

1. Introduction

Dynamic analyses are commonly carried out in the time or fre-
quency domain. While the frequency domain is attractive to easily deal
with periodic (including steady state) loading conditions with a char-
acteristic frequency pattern, restrictions apply regarding the super-
position of nonlinear structural responses. Time domain analysis is the
more general approach to deal with arbitrary load patterns, material
and structural nonlinearities as well as topological changes over time.
However, the fine time resolution of load pattern characteristics (e.g.
impact loads) and the structural response (e.g. eigenmodes) contradict
an efficient and fast computation of the long-term evolution of the
structure subjected to repetitive loading.

In case of soil-structure interaction (SSI), the geometry of the soil
(commonly regarded as partially unbounded) including wave propa-
gation and energy absorption due to radiation damping in the far field
has to be considered as well to set up a physically consistent model for a
numerical analysis of the coupled system (soil and superstructure). In
the past, different techniques have been developed to deal with SSI
problems. Often, the substructuring technique (introduction of a near
field and a far field – definition of several subsystems) is employed to
decompose the system into smaller subdomains, which are

geometrically and physically described by different, appropriate nu-
merical methods. For geometrically and physically nonlinear structural
parts of the system, the finite element method (FEM) in the time do-
main is used, whereas for geometrically and physically linear domains
with partially unbounded extension, boundary-oriented finite element
methods are employed to derive dynamic stiffness properties of a
common interface between near and far field, e.g. in the form of im-
pedance functions for different soil-foundation configurations, see e.g.
[1,2]. Numerical methods applied here are the scaled boundary finite
element method (SBFEM) [3], the boundary element method (BEM)
[4], the thin layer method (TLM) [5,6] and others. Infinite elements
[7,8] in terms of transmitting boundaries [9] regarding wave propa-
gation are also used. For a recent overview on numerical techniques,
see also [10].

Via the latter methods, expressions are commonly developed in the
frequency domain (superposition of solution parts for specific excitation
frequencies). To establish the link to the FEM in the time domain
analysis of the coupled system, a frequency to time domain transfor-
mation (e.g. Fast Fourier Transform (FFT) algorithm) is required, since
the dynamic stiffness of the unbounded media is obtained in the fre-
quency domain.

Another possibility to accomplish the frequency to time domain
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transformation is given by lumped-parameter models as representation
of unbounded media in the frequency and time domain. Lumped-
parameter models are based on the idea to find a rheological inter-
pretation of the frequency-dependent complex stiffness of the un-
bounded media (engineering approach) by additionally introducing
internal variables to the degrees of freedom of the external force-acting
node (e.g. reference node of the foundation) and to obtain a system of
differential equations of first order, which can be directly transferred
from the frequency domain to the time domain. In this case, basic
rheological elements (linear springs, dashpots, point masses) are as-
sembled in parallel, in series or in the form of different combinations to
represent the complex stiffness spectrum (so-called impedance func-
tions) in the frequency domain of one degree of freedom (DOF) or
several DOF of the interface for which the dynamic stiffness has been
obtained in the frequency domain. This is especially of interest for
engineering applications, where the modeling of the material behavior
via rheological elements is standard [11] (phenomenological approach
to represent the material behavior, see also [12]). Via the rheology of
these lumped-parameter models, the geometry and inhomogeneities
(e.g. layering) of the unbounded soil domain are included. Further-
more, simplified so-called optimal equivalent models [13] using an
even more simplified rheology (single DOF oscillator: spring, dasphot
and point mass) to best fit the half-space solution enable their appli-
cation for engineering tasks, see also [14].

Since the (linear) evolution laws of the basic rheological elements
(spring, dashpot, point mass) are well known in the frequency and time
domain, the transition from the frequency domain to the time domain
can be easily accomplished. Different approaches to derive a rheolo-
gical interpretation of the frequency-dependent complex stiffness of
unbounded media exist: approximation of stiffness [9,15–17] (in par-
allel lumped-parameter models) or approximation of flexibility (com-
pliance) [18,19] (in series lumped-parameter models). Other ap-
proaches focus on rational approximation [20] by using a combination
of stiffness and flexibility expressions for the additional internal vari-
ables in terms of displacement and force DOF (mixed variable for-
mulation), see e.g. [21,22]. The continued-fraction expansion results in
a system of fractional differential equations with respect to time. Note
that the corresponding continued-fraction expansion only results in a
system of fractional differential equations for particular applications,
such as diffusion. In general, it leads to a set of first order differential
equations. An efficient algorithm based on approximating the fractional
integral by a series of partial fractions in the frequency domain is dis-
cussed in [23–25] with a numerically more robust formulation in the
frequency domain and in the time domain for arbitrarily high orders of
approximation and large-scale systems.

For a computational implementation, a systematic procedure for
identification of constant (frequency-independent) coefficients is of
interest since the parameters often lack a physical interpretation, e.g.
no unique rheological representation of the frequency-dependent stiff-
ness exists since additional information (internal DOF) are introduced
for which the solution in the frequency domain does not provide a
unique choice.

Accurate lumped-parameter models exist for the homogeneous half-
space solution. For layered soil, radiation damping is zero below the
fundamental frequency of the layers. Hence, the imaginary part of the
complex stiffness in the frequency domain is zero too, which can only
be approximately incorporated into the lumped-parameter models
(approximation). In [26], the quality of consistent lumped-parameter
models for rigid footings is discussed focusing especially on the max-
imum response during excitation and the geometrical damping related
to free vibrations as well as the optimal order of a lumped-parameter
model. SSI for a foundation on soil is studied in [27] for unbounded and
layered soil [28]. In [29], the example of a rotor start on a pile foun-
dation is discussed using time domain analysis. Other examples focus
on the analysis of wind turbines [30] and related topics on resonance
and maximum amplitude [31].

Once the time domain representation of the SSI problem has been
obtained, an efficient time stepping algorithm has to be employed to
predict the long-term response of the coupled system to repetitive
loading.

In this contribution, the time homogenization technique is ad-
dressed as a method of computational homogenization, which is based
on the separation of the problem into two or more different time scales
(e.g. micro- and macro-time scale). The different time scales can be
identified from the loading and the structural response to the loading.
Homogenization methods make use of a model reduction on the macro-
time scale (loss of information during micro-to-macro transition) to
reduce the computational cost required to resolve a cycle-by-cycle si-
mulation in the time domain. The varying macro-time step size (to
ensure an imposed quality of the simulation result regarding spatial and
temporal resolution) depends on the

• time function of the excitation,

• time-dependent material behavior (short-term),

• time-dependent material behavior (long-term), and

• topological or structural changes of the structure.

Therefore, criteria are introduced to control the choice of the macro-
time step size.

In case of constant loads, the features of the structural response are
predominating. Periodic excitation occurs e.g. in case of fatigue ana-
lyses (high cycle fatigue) or lifetime estimations of the system. In en-
gineering practice, normally empirical relations are employed for life-
time predictions using the information of highly stressed regions of the
body which might be subjected to initial failure, see e.g. [32]. Ob-
viously, this procedure belongs to the type of model reduction (reduc-
tion of the spatial information of the body considered). Furthermore,
the initial failure regions might not be correctly tracked due to topo-
logical changes over time or failure initiation at other points of the
structure.

Another technique consists in the iterative computation of the sta-
bilized cycle state (steady state response) of inelastic material as an
iterative method. This method requires the existence of a steady state
solution, i.e. a stabilization of the structural response due to constant
cyclic loading must exist. Hence, this method is not applicable for the
evolution of structures with different short-term and long-term beha-
viors until ultimate failure.

To cope with different evolutions of phenomena, a decoupling
seems promising, see e.g. [33]. In [34], a linear extrapolation-based
method using the evolution of internal variables of one cycle to a multi-
cycle (cycle jump method) is proposed. However, quality loss is ex-
pected by loosing solution information (compared to a cycle-by-cycle
simulation) and the averaging of local quantities in time. The linear
extrapolation method is shown in [34] for the example of an elastic
fatigue-damage case. Other strategies focus on higher-order extrapola-
tion (e.g. second-order) or the extrapolation of both, internal variables
and displacement field, to arrive closer to the new equilibrium state of
the solution. In [35], corrective nodal forces computed from the evo-
lution of the internal variables are additionally used. Piecewise poly-
nomials are proposed in [36] with application to second- and third-
order extrapolations only since higher-order polynomials show oscil-
lations for larger extrapolation times. In [37], state variables (stress,
strain) and displacements are extrapolated to find a new equilibrium
state. It was pointed out that the new equilibrium state might not
correspond to the correct equilibrium state in terms of the full simu-
lation of cycles. To control the structural evolution during the compu-
tation, the jump size has to be restricted.

The time homogenization technique focuses on multiple scales,
which can be identified regarding the spatial and temporal resolution of
a system. Spatial homogenization has been widely employed to obtain a
spatially homogenized material response on the macroscale from a re-
presentative structure, the so-called representative volume element
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