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a b s t r a c t 

The acoustic waves transmitted through a dispersive environments can be quite complex for decomposi- 

tion and localization. A signal which is transmitted through a dispersive channel is usually non-stationary. 

Even if a simple signal is transmitted, it can change its characteristics (phase and frequency) during 

the transmission through an underwater acoustic dispersive communication channel. Commonly, several 

components with different paths are received. In this paper, we present a method for decomposition of 

multicomponent acoustic signals using the dual polynomial Fourier transform and time-frequency meth- 

ods. In real-world signals, some disturbances are introduced during the transmission. Common form of 

disturbances are the sinusoidal signals, making some of the frequency domain signal samples unreli- 

able. Since the signal components can be considered as sparse in the dual polynomial Fourier transform 

domain, these samples can be omitted and reconstructed using the compressive sensing methods. The 

acoustic signal decomposition and its reconstruction from a reduced set of frequency domain samples is 

demonstrated on examples. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The dispersivity in underwater channels has been a challenging 

topic in the recent years. Many channels with the phenomena of 

dispersion have been studied. A dispersive channel in underwater 

acoustics is a system which produces nonlinear signal transforma- 

tions [1–5] . That is, it shifts the propagating signal in the phase 

which will cause shifts in frequency and time in the received sig- 

nal. Another characterization of dispersive channels is that it pro- 

duces multicomponent signals due to multipath propagation which 

can occur for various reasons. The main one is the scattering of 

acoustic signals on the sea bottom. 

The received signal in a dispersive channel is different from 

the transmitted signal. It is a complex and non-stationary signal. 

Because of the non-stationary nature of these signals, the time- 

frequency signal analysis is a suitable tool for analysis. It can help 

in detection, extraction and localization of transmitted signals. The 

most common tool for the analysis of non-stationary signals is the 

time-frequency signal analysis [6–13] . A common problem in prac- 
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tice is strong harmonic disturbances. After these disturbances are 

removed, the signal components should be reconstructed. 

In the theory of sparse signal reconstruction, a signal is sparse 

if it has only few non-zero components in comparison to the total 

length of the signal. If the signal is sparse, it can be reconstructed 

with less measurements [14–18] . The considered acoustic signal is 

sparse in the dual polynomial Fourier transform (DPFT) domain, 

and the noisy measurements (impulses) occur in frequency do- 

main. The impulses in frequency domain will introduce sinusoids 

in time domain. These disturbances are removed, and the signal 

components can be reconstructed by compressive sensing meth- 

ods, such as the matching pursuit algorithm. In this paper, we 

present a method for decomposition of a signal which was trans- 

mitted through a dispersive environment. 

The paper is organized as follows. In Section 2 , the received 

signal from a dispersive channel will be modelled and explained. 

In Section 3 basic theory of compressive sensing is introduced. 

The polynomial Fourier transform for analysis and localization of 

acoustic signals will be presented in Section 4 . Numerical results 

and conclusions are given in Sections 6 and 7 , respectively. 
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Fig. 1. The time-frequency representation of the impulse response of five modes. 

2. Modelling of the received signals from dispersive channels 

Let us assume that an underwater acoustic wave is transmitted. 

Assume a linearly frequency modulated (LFM) signal of the form 

u (n ) = e jπαn 2 . (1) 

The signal propagates through an isovelocity underwater dispersive 

channel [2] , having the same velocity of sound over all volume [1–

5] . We will assume that the transmitter is located at the depth of 

z t meters. The receiver is located at the depth of z r meters. The 

distance between the transmitter and the receiver is denoted by r . 

The transfer function of the channel is 

H( f ) = 

+ ∞ ∑ 

m =1 

g m 

(z t ) g m 

(z r ) 
exp ( jk r (m, f ) r) √ 

k r (m, f ) r 

= 

+ ∞ ∑ 

m =1 

A t (m, f, r) exp 

(
jk r (m, f ) r 

)
, (2) 

where g m 

( z t ), g m 

( z r ) are the modal functions of the m -th mode for 

the transmitter and the receiver, respectively. The attenuation rate 

is A t (m, f, r) = A (m, f ) / 
√ 

r . The transfer function depends on the 

number of modes, and the modes are dependent on wavenumbers 

k r ( m, f ) [2] 

k r (m, f ) = 

(
2 π f 

c 

)
2 −

(
(m − 0 . 5) 

π

D 

)
2 (3) 

where D is the channel depth. The sound speed in the case of un- 

derwater communications is c = 1500 m/s. The modal functions 

g m 

are the solutions [2] of 

∂ 2 g 

∂z 2 
+ 

((
2 π f 

c 

)
2 − k 2 r (m, f ) 

)
g = 0 . (4) 

It is obvious that the transfer function of a dispersive channel 

is of a multicomponent structure. The components depend on the 

wavenumbers k r ( m, f ) and their frequencies, on modal functions g m 

and the distance r . 

The received signal is then 

x (n ) = u (n ) ∗ h (n ) , (5) 

where h ( n ) is the impulse response of (2) . An ideal time-frequency 

representation of the impulse response of a dispersive channel en- 

vironment is shown in Fig. 1 . Our goal is to decompose the mode 

functions, which will make the problem of detecting the transmit- 

ted signal straightforward. This decomposition makes compressive 

sensing methods application possible to use as well. The decompo- 

sition method will be formulated within the compressive sensing 

approach. 

In some real-world scenarios, the signal will be received with 

a kind of disturbance. Here, we will assume that the signal is cor- 

rupted with strong sinusoidal disturbances 

x d (n ) = x (n ) + 

N M ∑ 

l=1 

B i e 
j(ω l n + ψ l ) . (6) 

The strong periodic disturbances should be detected and removed. 

Methods for detecting and removing strong disturbances will be 

presented next. 

3. Sparse signal reconstruction 

Assume a signal x ( n ), 0 ≤ n < N and its linear transform X ( k ), 

which will be defined as 

X (k ) = 

∑ 

n 

ψ k (n ) x (n ) (7) 

where ψ k ( n ) is the basis function of the transform used. In the 

vector form they are written as 

x = [ x (0) , x (1) , . . . , x (N − 1)] T (8) 

X = [ X (0) , X (1) , . . . , X (N − 1)] T . (9) 

They are related via N × N transformation matrix A N as 

X = A N x . (10) 

We will assume that signal x ( n ) is sparse. It means that the sig- 

nal x has only K � N samples x (n 1 ) , x (n 2 ) , . . . , x (n K ) that are non- 

zero. When the signal is sparse in one of its domains, it can be 

reconstructed with less measurements in one of its transformation 

domains, i.e. with N A < N . The signal measurements in this case are 

coefficients of its transform at positions N A = { k 1 , k 2 , . . . , k N A } . The 

measurement vector is defined by 

y = [ X (k 1 ) , X (k 2 ) , . . . , X (k N A )] T . (11) 

Vector form of the measurements equation is 

y = Ax (12) 

where A is a N A × N matrix 

A = 

⎡ 

⎢ ⎢ ⎣ 

ψ k 1 (0) ψ k 1 (1) · · · ψ k 1 (N − 1) 
ψ k 2 (0) ψ k 2 (1) · · · ψ k 2 (N − 1) 

. . . 
. . . 

. . . 
. . . 

ψ k N A 
(0) ψ k N A 

(1) · · · ψ k N A 
(N − 1) 

⎤ 

⎥ ⎥ ⎦ 

(13) 

where ψ k ( n ) are the transform coefficients. The matrix is obtained 

by keeping only the rows of A corresponding to the available mea- 

surements. 

The goal of compressive sensing is to reconstruct the signal by 

minimizing x using the available measurements y 

min ‖ 

x ‖ 0 subject to y = Ax . (14) 

It is assumed that the reconstruction conditions are met. The so- 

lution of problem (14) can be found in various ways. One of the 

common algorithms to solve the problem is the orthogonal match- 

ing pursuit (OMP) [18] . In the first step of the OMP, the position of 

the largest component is found 

n 1 = arg max { x 0 } (15) 

using the initial estimate x 0 = A 

H y , calculated using only the 

available measurements. A new partial matrix of the matrix A is 

formed, omitting all columns except the row which corresponds to 

the estimated position n 1 . New matrix is then A 1 . The estimate of 

the first component in the time domain is 

x 1 = (A 

H 
1 A 1 ) 

−1 A 

H 
1 y . (16) 
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