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Marchenko imaging is a methodology to image the subsurface with two important properties: (1)accurate am-
plitude and (2)free from free-surface and internal multiple artefacts. It requires an estimate of the first arrival
of the focusing function which is commonly obtained from a macro velocity model. Inspired by this limitation,
a projected Marchenko scheme has been introduced from which an internal multiple reflection elimination
scheme has been derived. This internal multiple reflection elimination scheme requires an estimate of the
two-way travel time surface of a selected horizon in the subsurface instead of a macro model. In order to make
it totally model free we have rewritten the scheme by replacing the estimate of the two-way travel time surface
by a fixed truncation for all traces. The output of the current scheme contains primary reflections without con-
tamination from internal multiple reflections. We apply this scheme to a 2D numerical example to illustrate
the procedure of this method and show how the internal multiple reflection eliminated data set can be retrieved
and the migration image is improved.
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1. Introduction

Strong artefacts due to internal multiple reflections can occur in mi-
gration of images produced from marine (Hadidi and Verschuur, 1997;
Van Borselen, 2002) and land data (Kelamis et al., 2006). Several
schemes have been developed to predict and subtract internal multiple
reflections from measured data, such as internal multiple elimination
(IME) (Berkhout and Verschuur, 2005) and inverse scattering series
(ISS) (Weglein et al., 1997). For IME, the identification of the internal
multiple reflection generators in the input data is required. The subtrac-
tion of the predicted internal multiple reflections is applied by a least-
squarematching filterwith aminimum-energy criterion. For ISS, the in-
ternal multiple reflections can be predicted with approximated ampli-
tude (Löer et al., 2016). Ten Kroode et al. (2002) derive a multiple
reflection elimination scheme from ISS and source-receiver interferom-
etry with specific truncation. However, global or local matching filter is
usually required to subtract the predicted internal multiple reflections
from measured data (de Melo et al., 2014).

Recently, Marchenko imaging has been introduced to deal with in-
ternal multiple reflections (Slob et al., 2014; Wapenaar et al., 2014a;
da Costa Filho et al., 2015). For this scheme, up- and downgoing focus-
ing functions with focal point at an arbitrary position in the subsurface
can be retrieved by solving the coupled Marchenko equations and up-
and downgoing Green's functions can be solved from Green's function

representations by using the solved focusing functions as inputs. By
deconvolving the retrieved upgoing Green's function with the
downgoing Green's function, a virtual reflection response with virtual
source and virtual receivers in the subsurface can be obtained. The vir-
tual reflection response forms the basis for obtaining an artefact-free
image when the zero-time-lag crosscorrelation between the retrieved
up- and downgoing virtual responses is extracted at any image point
(Wapenaar et al., 2014b; Broggini et al., 2014). Based on Marchenko
redatuming and convolutional interferometry, an approximate primary
reflection retrieval scheme has been proposed (Meles et al., 2016). Van
der Neut and Wapenaar (2016) rewrite the coupled Marchenko equa-
tions by projecting them to the acquisition surface. Based on the revised
Marchenko scheme an adaptive overburden elimination approach is in-
troduced. All orders of internalmultiple reflections above a specified ho-
rizon can be removed without having to remove internal multiple
reflections from shallower horizons.

Based on the revised Marchenko equations, van der Neut and
Wapenaar (2016) present a scheme to eliminate internal multiple re-
flections from themeasured acoustic wave field and apply it to a 1D nu-
merical example. In order to make it totally model free we have
rewritten the scheme by replacing the estimate of the two-way travel
time surface by a fixed truncation for all traces in this paper. The rewrit-
ten scheme entirely obviates the requirement of estimating the first ar-
rival in the focusing wave field from one-sided Marchenko equations
(Slob et al., 2014;Wapenaar et al., 2014b) to eliminate internal multiple
reflections from the measured acoustic wave field. One-sided reflection
data is required as input. Because of the elimination of internal multiple
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reflections, the retrieved data set contains only primary reflections. The
obtained data set is more suitable for subsequent AVO or AVA analysis
and as input for velocity model building. The updatedmodel can subse-
quently be used to image the medium, it can also be used to image the
mediumwithout artefacts due to internal multiple reflections.We pres-
ent a 2D numerical example to illustrate how a dataset free from inter-
nal multiple reflections can be retrieved using the current scheme
leading to improved quality in the resulting migrated image.

2. Theory

We indicate time as t and the position as x = (x,y,z), where z de-
notes depth and (x,y) denotes the horizontal coordinates. The acousti-
cally transparent acquisition boundary ∂D0 is defined as z0 = 0. For
convenience, the coordinates at ∂D0 are denoted as x0 = (xH,z0), with
xH = (x,y). Similarly, the position at an arbitrary depth level ∂Di is de-
noted as xi = (xH,zi), where zi denotes the depth of ∂Di. We express
the acoustic impulse reflection response as R(x0′,x0, t), where x0 de-
notes the source position and x0′ denotes the receiver position, both lo-
cated at the acquisition surface ∂D0. In practice, it means that free-
surface related multiple reflections should first be removed from the
measured reflection response, in which step the source locations are
redatumed to the receiver depth level and the source wavelet should
be recovered and accurately deconvolved from the data. The focusing
wave field f1(x0,xi, t) is the solution of the homogeneous wave equation
in a truncated medium and focuses at the focal point xi. We define the
truncated domain as ∂D0 b z b ∂Di with z0 b z b zi. Inside the truncated
domain, the properties of the medium are equal to the properties of
the physical medium. Outside the truncated domain, the truncatedme-
dium is reflection-free. The Green's function G(xi,x0,t) is defined for an
impulse source that is excited at x0 and a receiver is positioned at the
focal point xi. The Green's function is defined in the same physical me-
dium as the measured data. The focusing and Green's functions can be
partitioned into up- and downgoing constituents and for this we use
power-flux normalized quantities (Wapenaar et al., 2014a).

We start with the 3D versions of one-way reciprocity theorems for
flux-normalized wave fields and use them for the depth levels z0 and
zi. When the medium above the acquisition level z0 is reflection-free,
we have the Green's function representations (Wapenaar et al., 2014a),
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Superscripts + and − stand for downgoing and upgoing fields, re-
spectively. The downgoing component of the focusing function f1

+(x0,xi,
t) is the inverse of the transmission response in the truncated medium.
We can write both the focusing function and the transmission response
as the sum of a direct part and a coda

fþ1 x0; xi; tð Þ ¼ fþ1d x0; xi; tð Þ þ fþ1m x0;xi; tð Þ; ð3Þ

T xi;x0; tð Þ ¼ Td xi;x0; tð Þ þ Tm xi; x0; tð Þ; ð4Þ

where f1d
+ and Td indicate the direct part, whereas f1m+ and Tm indicate

the following coda. Wapenaar et al. (2014b) show that
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where δ(xH) is a spatially band-limited 2D delta function in space and
δ(t) is a delta function in time. Eq.(5) means that Td is the inverse of
f1d

+. Following van der Neut and Wapenaar (2016), we apply multidi-
mensional convolution with Td as shown in Eq.(5) to Eqs.(1)and (2) to
find
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With v− defined as
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where vm
+ is convolved version of f1m+, U− and U+ are convolved ver-

sions of G− and G+, similar as is shown in Eq.(8) for f1−. Based on the
fact that the convolved Green's and focusing functions in Eqs.(6)and
(7) are separated in time except for the first event in the convolved
downgoing focusing function and last event in the convolved time-
reversed downgoing Green's function in Eq.(7) (both of them are
delta functions after the convolution) that coincide with each other.
We rewrite Eqs.(6)and (7) as
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where t2 denotes the two-way travel time from a surface point x0′ to the
focusing level zi and back to the surface point x0″, and ε is a positive value
to account for the finite bandwidth. Thenwe give Eqs.(9)and (10) in the
operator form as
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Fig. 1. Acoustic impendance of the model.
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