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A B S T R A C T

We describe spreading of diseases in geographical space via superdiffusion. Nowadays people travel a lot over
wide distances and therefore the spread of the infection happens not only locally i.e. from one person to the
neighbor, but also for large distances. Superdiffusion has been suggested to model this type of epidemiological
spreading in space. We consider the analytically tractable case of a diffusion like process on the lattice which is
used as a surrogate process of human contacts in epidemiology. A stochastic process for a population is then used
where the notion of distance is given by power law decaying connectivities, in good agreement with the ana-
lytics. We apply the results to the SIS model on the lattice.

1. Introduction

In order to describe epidemiological spreading, one can use in-
dividual based stochastic processes for a given host population of size
N, where neighbouring contacts are specified via an adjacency matrix
(see e.g. Stollenwerk and Jansen, 2011; Stollenwerk et al., 2010 and
many further references there). By default not only regular lattices but
also other networks like purely random networks or small world net-
works can be modelled this way.

However, it is difficult to quantify the connectivity of such epide-
miological networks, especially on large scales. From basic knowledge
of e.g. physical processes we know that as long as the connectivity is
purely local, no matter which neighbourhood is chosen, will on a large
scale be always behave as Gaussian diffusion. Besides such purely local
or sufficiently fast decaying connectivities, leading to such ordinary
diffusion, there are also other possibilities of large scale spreading, the
Lévy stable processes of only power law decaying connectivity.

Besides often poor attempts to quantify connectivities of epide-
miological spreading directly, there have been also studies conducted of
so called surrogate processes for human contacts, as e.g. recently a
detailed investigation of the spatio-temporal distribution of money
bills, here especially one-US-dollar bills, assuming that these are mainly
exchanged from person to person as they meet and travel
(Brockmann et al., 2006). It turned out that the connectivity suggested
by such surrogate data of human mobility are much more on the side of
Lévy processes with power law decay than of ordinary diffusion. These
processes are described by superdiffusion rather than ordinary Gaussian

diffusion via fractional calculus, see among many others e.g. the fol-
lowing references for the foundation and applications of fractional
calculus (Kilbas et al., 2006; Martinez and Sanz, 2001; Rubin, 1996;
Samko et al., 1993) with a lot of attention to this date, e.g.
Kwaśnicki (2017). For superdiffusion and its connection to fractional
calculus see e.g. Brockmann and Hufnagel (2007), Brockmann (2003)
with many more references there, and more recently also Skwara et al.
(2012a,b) with additional references.

In many cases superdiffusion is modelled by particles moving around,
but in epidemiology the most important process is the contact between
susceptible and infected persons, no matter who is moving and who is
not, but contacted by the moving. In the framework given by e.g.
Stollenwerk and Jansen (2011) and Stollenwerk et al. (2010), all is
needed is the power law decay in the connectivity given by the adjacency
matrix, i.e. who can have contact with whom and hence the probability
of spreading a disease from whom to whom. After a revision of various
different ways of fractional calculus (Boto and Stollenwerk, 2009), it
turns out that the Riesz fractional derivative is most natural and easiest
to apply in the case of superdiffusion, since its definition via the Fourier
transform is closest to the analytical solution of ordinary diffusion, and as
well easily applicable in higher dimensions (as opposed to the most
common applications of e.g. Liouville fractional derivatives etc. in one
dimensional space), though most of the possible definitions of fractional
calculus finally agree with each other when compared well (Brockmann,
2003; Kwaśnicki, 2017; Samko et al., 1993). Analytically, the Riesz
fractional derivative is most elegant, but in addition we need for the
generalization of the stochastic processes described in Stollenwerk and
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Jansen (2011) and Stollenwerk et al. (2010) a notion of the non-locality
of the generalized Laplacian operator as given by an integral re-
presentation, which is provided by the convolution theorem of Fourier
analysis. With this at hand the connectivity of the epidemiological net-
works can be expressed via a generalization of the adjacency matrix, now
with power law weighted probabilities of the spreading.

The framework provided by the diffusion or superdiffusion process
then can be applied easily to any epidemiological process, of suscep-
tible-infected-susceptible (SIS-type), to susceptible-infected-recovered
(SIR-type), or any other including reinfection or multi-strain processes.
Here we will concentrate on the simplest SIS process which is giving
diffusion or superdiffusion processes similar to the well known Fisher-
Kolmogorov-Petrovski-Piscounov process (Fisher, 1937; Kolmogorov
et al., 1937) with its widely known qualitative behaviour of front
propagation from the infected region to the susceptibles.

The present article is structured as follows: We first give in Section 2
a quick outline of the stochastic process formulation for N individuals
on a generalizable lattice, here of SIS-type (see Stollenwerk et al., 2010
for generalizations to SIR-type and further processes with reinfection).
This formulation can as well formulate processes of exchanging items
like money-bills on the same contact networks, leading naturally to
diffusion processes, and in the case of regular lattices with nearest
neighbour connectivity to ordinary diffusion, in Section 3. Conse-
quently in Section 4 we revisit the solution of the ordinary diffusion
equation via Fourier transformation, which immediately leads to the
generalization via the Riesz fractional derivative in Fourier space of
superdiffusion in Section 5. Since the Lévy stable function, now ap-
pearing in superdiffusion instead of the Gaussian function in ordinary
diffusion, we need to consider the discrete Fourier transform for nu-
merical investigations in Section 6. In order to compare the stochastic
process formulation and its histograms with the numerics of the Fourier
analysis we need in addition the integral representation via the con-
volution theorem of Fourier transforms, this in Section 7. Finally, in
Section 8 we give the formulation of diffusion and superdiffusion in
higher dimensional space as a straight forward extension of Fourier
transforms from one to higher dimensions and in Section 9 the appli-
cation of the results of superdiffusive spreading to the SIS system, in
close connection to Fisher-Kolmogorov-Petrovski-Piscounov processes.

2. Spatially extended stochastic epidemiological models

We consider a host population of size N, where each individual is
labeled by the index =i N1, 2, ..., and can in the simplest case of an SIS
epidemiological model be infected, =I 1,i or susceptible, in which case

=S 1i and =I 0i . The concepts presented here can be easily generalized
to more complex models like the SIR-model etc. (Stollenwerk et al.,
2010). In the case of the SIS epidemiological model we only need to
consider the N variables I1 to IN and Ii∈ {0, 1}. Via = −S I1i i we always
know then also the number of susceptibles. The state of the individual
based system is at any time t defined by the set of variables (I1, I2, ...,
IN).

Any spatial or contact network structure can be given by an N×N
matrix J which codes which individual i is neighbour to which other j
via the matrix elements Jij∈ {0, 1} of the adjacency matrix J, hence

=J 1ij for neighbouring sites i and j, else =J 0ij . Since contacts are
mutual, we have no directional network, and the adjacency matrix is
symmetric, hence = ∈J J {0, 1}ij ji for i≠ j. Further we assume no self-
contact, hence =J 0ii .

A susceptible individual Si can become infected when one or more of
its neigbours Ij are infected, =I 1,j by the infection rate β, and infected
can recover with recovery rate α, hence we have the reaction scheme
for the spatial SIS model
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as analyzed in Stollenwerk and Jansen (2011). The transition rates are
probabilities per time, hence for the states (I1, ..., IN) at any time we have
to consider probabilities p(I1, ..., IN, t) and with the transition rates we
can give the dynamics of the probabilities via a master equation to de-
scribe the time continuous Markov process, which we have just defined.

For the SIS model the master equation is given by
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and defines the dynamics of the stochastic system, ones the initial
distribution of probabilities p(I1, ..., IN, t0) is given (Stollenwerk and
Jansen, 2011).

Via simulation techniques, like e.g. the Gillespie algorithm, we can
obtain single realizations of the stochastic process. Superimposing
many such realizations we can estimate the expectation values to have
an infected on any lattice site i, i.e. ⟨Ii⟩. Such local expectation values
are defined by the usual expression for expectation values, hence any
function of state variables multiplied by the probability of the states
and summed up over all possible states, we have here
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Then, the time evolution of the local expectation values are determined
by
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where the master equation has to be inserted for p I I t( , ..., , )d
dt N1 . After

some calculations, which are described in more detail in
Stollenwerk and Jansen (2011), pp. 23–32, we obtain the following
form for the dynamics of the local expectation values
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which provides an easy and intuitive way to calculate generally dy-
namics of these local expectation values. In the last line we used

= −S I: 1i i. The dynamics of ⟨Ii⟩ now contains higher moments, here
⟨IiIj⟩, respectively ⟨SiIj⟩, which leads to differential equations for these
higher moments etc. To obtain a closed ODE system for the set of
variables ⟨I1⟩ to ⟨IN⟩, we can use a mean field approximation where
here the local cross variances are neglected. We will discuss this ap-
proach further in Section 9.

First, we will describe another individual based stochastic process,
which was suggested to investigate as a surrogate process the human
contact network, on which also epidemics spread. This surrogate process
is the dynamic spreading of money bills between individuals which meet
each other, hence are neighbours in the sense of the same adjacency
matrix J on which also diseases can spread (Brockmann et al., 2006).

3. An individual based random walk model

In order to investigate the human contact structure, here specified
by the adjacency matrix J, we consider individuals Ii which have an
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