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A B S T R A C T

The primary work of formulating land use planning is to pursuit an optimized land use pattern to guide human
activities for land utilization effectively. However, due to numerous spatial units and multiple land use types, as
well as the spatial heterogeneity and incompatible objectives, land resource spatial optimization (LRSA) be-
comes a challenging issue. Currently, relevant research focuses on the exploitation of methods to enhance the
efficiency of LRSA to meet the interactive demand of plan making. This paper designed a new simulated an-
nealing (SA) algorithm for LRSA and provided an interactive platform to determine the ideal land use pattern in
terms of stakeholder preferences on conflicted objectives. First, a general optimization model with three parts,
including objectives, constraints and the multi-objective decision making technique, was presented. Second, for
SA with crossed combinations of three cooling functions and four types of solution renewal jump steps, 12 SA
sub-models were proposed, of which efficiency was compared. Lastly Jiangdu County in China was used as a case
study. The following conclusions were reached: our excavation made SA efficiency for LRSA increased by about
35%, and the sub-model with logistic curve as cooling function and jump step was a gradually decreasing
parameter was the most effective model; the proposed approach could obtain an ideal solution on any location of
the frontier according to stakeholder preferences for conflicted objectives, thereby providing a useful interactive
tool to reach an agreeable scheme transparently.

1. Introduction

Recent land use change primarily caused by rapid urbanization has
given rise to a series of problems, including the encroachment of arable
land, a reduction in biodiversity, environmental pollution, and a
modified hydrological cycle, which creates challenges for global food
safety and the ecological environment, thereby resulting in develop-
ment with poor sustainability (Foley et al., 2005; Liu et al., 2014a;
Scholz, 2007; Song et al., 2002). Land is an important factor of pro-
duction, and it is essential for human development and the ecological
environment. Thus, the allocation of land to various departments de-
termines the structure and function of socioeconomic system. Land al-
location is increasingly becoming a useful management tool to achieve
sustainable development (Cao et al., 2012; Liu et al., 2013). In reality,
land resource spatial allocation (LRSA) is the core of land use planning
which is typically divided into two associated parts: the first is to
generate land resource allocation alternatives with integrated models;
based on this, the second is to assimilate public engagement to de-
termine an agreeable plan (Janssen et al., 2008). Therefore, to effec-
tively enhance land use planning of promoting sustainability, LRSA is

studied to advise policy makers on the quantity and location of land
resource allocation for different socioeconomic departments, which
fundamentally determines the level of sustainability. Essentially, LRSA
is a spatial optimization problem, where planners attempt to reconcile
multiple conflicting interests as rationally and transparently as possible
by manipulating the quantity and locations of different land use types
(Carsjens and van der Knaap, 2002). However, because of the following
characteristics, it becomes a rather complex optimization issue.
The first is the massive spatial units and various land use types,

which means planners have to determine the land use type of every
spatial unit, e.g., 100× 100 cells with n land use types will have as-
tronomical n100*100 possibilities, which is called NP-hard problem in the
operational research field, and there are currently no good methods to
solve it accurately. Compared to allocation of only one land use type,
the allocation of multiple landscapes requires the management of their
occupation competition for spatial units, which drastically increases the
complexity. Second, LRSA is a typical multi-objective optimization,
including not only economic and ecological benefits but also a spatial
objective, which refers to the spatial distribution of land use patterns,
such as compactness, adjacency and coherence. Thus, measuring the
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spatial objective and reconciling the conflicts of various objectives are
significant challenges. Third, heterogeneous space increases the com-
plexity of LRSA. Due to differences of geographical locations, spatial
cells even with the same land use type, will have different economic
and ecological benefits, which is the primary reason for adopting spatial
optimization rather than quantity optimization. Thus, we need to cal-
culate each cell value of the suggested objectives with different land-
scapes. Fourth, temporal dimension must be considered. Typically, the
LRSA object for land use planning is not at present, but in the future.
Hence, influential factors of future land use should be forecasted spa-
tially to help determine the land use types of the spatial units, which
undoubtedly brings many challenges. Therefore, although LRSA is the
essence of spatial planning which is employed to guide human activities
to achieve sustainability, it is difficult to resolve because it is a typical
NP-hard problem with incompatible objectives and non-linear spatial
peculiarity, as well as spatial heterogeneity.
Various methods were previously applied to LRSA, which were

generally classified as traditional programming, i.e., linear and non-
linear programming (Aerts et al., 2003; Campbell et al., 1992; Cocks
and Baird, 1989; Ligmann-Zielinska et al., 2008; Meyer et al., 2009;
Zhang et al., 2015) and a heuristic approach. There are two dis-
advantages for traditional programming: first, it cannot completely
account for nonlinear spatial objective values, and it always simplifies
the spatial objective formulation. Second, it is unable to handle a region
with cells exceeding 50×50 due to the numerous variables and con-
straints, and the solution time of traditional programming has dis-
advantages compared to heuristics (Aerts et al., 2003). Although
Ligmann-Zielinska et al., 2008 used traditional programming model to
calculate the spatial allocation for 73,396 cells, later Zhang et al., 2015
used the same model to calculate for 1244×944 cells, and utilized the
paralleled branch and bound algorithm to search for an exact optimal
solution using a super computer. However, they assumed the space is
homogenous, which we think did not capture the essence of LRSA due
to the neglect of spatial heterogeneity; thus, they significantly simpli-
fied this issue. There is currently no significant evidence that traditional
programming could manage LRSA properly in large regions.
Therefore, current researchers tend to use heuristics applications to

resolve this situation. Overall, five primary heuristics methods have
been used to search for an optimized alternative for LRSA: simulated
annealing (SA) algorithm, genetic algorithm (GA), particle swarm op-
timization (PSO), ant colony optimization (ACO) and other heuristics.
The traditional GA modified on crossover and mutation operations was
widely used for LRSA (Cao et al., 2011, 2012; Feng and Lin, 1999;
Haque and Asami, 2014; Kundu, 2009; Stewart et al., 2004). Theore-
tically, that is completely feasible, however, when cell numbers are
larger than 100×100 the runtime is too long. To shorten the runtime,
a spatially explicit GA model was proposed (Holzkämper and Seppelt,
2007; Liu et al., 2015) where only cells on the spatial boundaries of
different landscapes were allowed to evolve; in addition, different
paralleled GA paradigms were designed to enhance optimizing effi-
ciency (Porta et al., 2013). SA is the second most popular heuristic
method for LRSA (Aerts and Heuvelink, 2002; Duh and Brown, 2007;
Eldrandaly, 2010; Liu et al., 2012c; Santé-Riveira et al., 2008), which
uses randomly selected clusters that are altered to create a new solution
during the evolutionary mechanism searching for the ideal alternative,
and it was always comparable to GA on efficiency (Aerts et al., 2005).
PSO primarily includes general PSO and hybrid PSO. For general PSO,
due to the unsolved location renewal mechanism of multi-dimensional
particles, it may be unrealistic for spatial allocation application
(Ma et al., 2010). For hybrid PSO, it is essentially the same as GA,
having crossover and mutation as evolutionary operations. However,
for PSO, the particle dimensions represent the areas of different land-
scapes, requiring a constant area constraint for each landscape before
spatial allocation (Liu et al., 2012b, 2013; Wang et al., 2012). There-
fore, it could not determine the optimized solution solely based on the
occupation competition for cells using spatial characteristics. When

ACO is used for spatial allocation, ant type is determined using land use
type, and each cell is an ant; the essence of ACO is to modify the cells’
conversion probability of next iteration with feedback values of the
optimized objective from last loop, which is an evolutionary operation
of improving alternative performance and was proved to be more ef-
ficient compared to GA and SA (Liu et al., 2012a, 2014b). However, we
think it cannot be used for typical multi-objective optimization, because
there are always several conflicting objectives and it is not clear which
objective's should be selected as feedback to adjust the conversion
probability in the evolutionary process. For example, if economic ob-
jective is chosen as feedback, then the final solution is economic-biased,
and if the ecological objective is the feedback, then the final solution is
ecology-biased. Other heuristics application for LRSA including artifi-
cial bee colony (ABC) (Yang et al., 2015), artificial immune system
(AIS) (Huang et al., 2013), tabu search (TS) (Mohammadi et al., 2016),
however we find the evolutionary operation of these heuristics are just
like crossover and mutation of GA, or just like the Hop-Skip-Jump
technique firstly proposed by Brill et al. (1982).
Multi-objective decision making is important for LRSA, as different

stakeholders have different requirements on land utilization, and an
informed scheme can only be obtained if the advantages and dis-
advantages of the alternatives are carefully considered to make the
decision process transparent and clear (Linkov et al., 2006), which is
necessary for land use planning formulation. Thus, LRSA methods
should have the ability to manage trade-offs among multiple objectives
and to measure these trade-offs. According to the literatures, there are
three practices for multi-objective decision making. The most common
is the simple weight sum method where each objective is given a weight
with which multiple objectives are summed up linearly as the final
optimization criteria (Aerts et al., 2003). The second is the Pareto
Optimum method that seeks the non-dominated set as the final solution
(Polasky et al., 2008; Xiao et al., 2002, 2007). The third is the Goal
Programming model where a reference point is used to generate the
desired solution (Stewart et al., 2004). The first approach always leads
to highly biased solutions and cannot find solutions on the frontier. The
second and third approaches both find solutions on the frontier, and
their difference (Fig. 1) is that the second determines a non-dominated
set which is a group of solutions on the frontier, while Goal Program-
ming only determines one solution on the frontier every time. Ac-
cording to the convex character, the nearest distance from the reference
point to dashed area is the distance to its boundary, therefore, the so-
lution solved by Goal Programming is also on the frontier. In this paper,
Goal Programming is chosen because it can generate a non-inferior
solution with regards to stakeholder preferences denoted by the re-
ference point.
Data type (vector or grid) can impact the efficiency of LRSA mod-

eling to some extent, and due to generally having relatively fewer
spatial units and the advantage of measuring spatial objectives, vector
format optimization is thought to be more efficient. However, the
practical regulation demand of land use planning should be considered:
if plot is regulated as the basic land use unit and is not allowed to be
divided into small parcels, vector format will be chosen; otherwise grid
format is the better selection. Due to intense demand pressure, land
resource is more inclined to have fragmented utilization, e.g., some-
times plots need to be divided to satisfy different stakeholder claims.
Therefore, vector format optimization may provide limited significance
for land use management. From previous available studies, we also
found grid format allocation to be the primary practice, and few re-
ferences used vector format (Liu et al., 2012c; Porta et al., 2013;
Stewart and Janssen, 2014). In short, the final purpose of LRSA is to
develop a planning decision support system which requires an accep-
table runtime for generating alternatives. Currently, with computer
hardware improvements, the paralleled algorithm is the future trend
(Porta et al., 2013; Zhang et al., 2015). However, we should first de-
termine which heuristics to be employed as meta-heuristics for the
parallel design, since it impacts optimizing efficiency fundamentally.
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