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a b s t r a c t

In frequency-domain analyses, absorption and transmission characteristics are often modeled as complex
surface impedance and complex transfer impedance, respectively. It is however difficult to take the
frequency-dependent characteristics into account directly in the finite-difference time-domain (FDTD)
method. In this study, a locally reactive boundary using mechanical mass-damper-spring (MDS) systems,
which is herein called an MDS boundary, is formulated for sound absorption and transmission analyses
by the FDTD method. In addition, the stability conditions of the MDS boundary are discussed. One-
dimensional numerical examples show that the MDS boundary can approximate various simple absorp-
tion and transmission frequency-dependent characteristics by tuning the parameters of masses, damping
constants, and spring constants. Some of them also show that the stability condition of the mechanical
MDS system itself is not sufficient and the stability condition considering the effects of the adjacent cells
to the MDS boundary can offer the stable calculations. Furthermore, the procedure in a situation where
the MDS boundary is not located in parallel with the cell grids is verified by a three-dimensional numer-
ical example.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The finite-difference time-domain (FDTD) method, which uses
staggered grids and a leap-frog algorithm in calculation, is one of
the finite-difference methods in which the derivatives in its gov-
erning equations are approximated by difference quotients with
discretization of time and space. This method was originally devel-
oped in the field of electromagnetics by Yee [1], and recently has
been applied to various wave propagation problems [2,3]. In acous-
tic fields, this method can easily provide transient distributions of
sound pressure and particle velocity, and therefore the FDTD
method has been used to carry out various visualizations of sound
fields [4]. In addition, auralizations have been conducted using the
obtained transient responses of sound pressure in the evaluation of
auditoriums [5], and to investigate physical phenomena such as
flutter echoes [6].

In real situations, boundaries often introduce a substantial
degree of complexity into systems, as they can bring several differ-
ent physical mechanisms into play, such as absorption, transmis-
sion, resonance, and coupling with vibrations, and therefore,
comprehensive models are required in order to accurately predict
their behavior. For example, a very thin absorptive layer installed

in a large sound field has to be discretized into small cells in order
to rigorously calculate its absorption performance: consequently,
huge computational resources are required when the attached
sound field is discretized into the same small cells. In order to
reduce the calculation cost, methods using local-grid systems [7]
have been proposed; however, to this point, calculation instability
and prediction inaccuracies have been major obstacles hindering
development of these methods. In practical terms, a thin layer such
as that considered here should be modeled as a boundary without
discretization in the thickness direction.

In frequency-domain analyses, an absorptive layer installed in
front of rigid walls is often modeled as a boundary with
frequency-dependent complex surface impedance [8]. It is, how-
ever, difficult to take the frequency-dependent characteristics into
account directly in time-domain calculations such as the FDTD
method. In addition, further difficulties arise with the typical FDTD
method when considering a phase delay due to the absorptive
layer: Although the FDTD method is only able to handle real num-
bers, the phase delay is expressed as an imaginary part of the com-
plex surface impedance. To address these difficulties, a number of
boundaries for the finite-difference method have been proposed
[9–14]. Among them, Sakamoto et al. [14] have proposed a
boundary with two degrees of freedom (DOF) using mechanical
mass-damper-spring (MDS) systems, showing that various
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frequency-dependent absorption characteristics can be approxi-
mated for the FDTD method by tuning the six parameters of two
masses, two damping constants, and two spring constants. How-
ever, the previously proposed boundaries cannot deal with sound
transmission through them; therefore, it would be desirable to
develop a boundary that is able to account for both sound absorp-
tion and transmission characteristics of a boundary, allowing for
effective application of the FDTD method to sound insulation prob-
lems. Extending the idea of Sakamoto’s boundary [14], the present
paper proposes a locally reactive boundary using MDS systems
inserted between propagation media to approximate frequency-
dependent absorption and transmission characteristics: the
boundary, which is herein called an MDS boundary, has three
DOF with seven parameters of three masses, two damping con-
stants, and two spring constants. Note that, although the MDS sys-
tem has three-DOF, it has only two eigenvalues. This implies that
the approximation accuracy is not much different from the Saka-
moto’s boundary which has the same number of eigenvalue.

Currently, it is well known that stability conditions for wave
propagation in FDTD calculations are important. However, instabil-
ity due to boundary treatment has not been widely investigated.
Carpenter et al. [15] investigated the stability characteristics of
various high-order compact difference schemes for Euler equa-
tions: it was shown that the stability depends on the combination
of finite-difference orders for an internal region and boundaries. As
a result, they were able to develop a series of compact fourth- and
sixth-order schemes that provide stable calculations. Ilan et al. [16]
reported an instability of elastic wave propagation due to a free
boundary: by considering the impact of the instability of Poisson’s
ratio of a medium adjacent to the free boundary, a stable approx-
imated formulation for the free boundary was proposed. However,
the relationship between the spatial and time intervals was not
stated, and thus the stability with an arbitrary spatial interval can-
not be assured using this formulation. As is shown in Section 4.1,
when an MDS boundary is employed, the calculated responses
sometimes diverge, even if the stability condition for wave propa-
gation is satisfied. Thus, it is necessary to derive the associated sta-
bility conditions.

In this study, an MDS boundary offering approximate
frequency-dependent absorption and transmission characteristics
to those which one intends to give the boundary, which are herein
called target characteristics, is formulated for the FDTD method.
The procedure in a situation where the MDS boundary is not
located in parallel with the cell grids is also introduced. In addition,
stability conditions for the MDS boundary are derived from the
viewpoint of the relationship between spatial and time intervals.
Lastly, one- and three-dimensional numerical examples are pre-
sented and discussed in terms of the validity of the formulation
and stability conditions.

2. Formulation

Let us consider a discretized sound field with an MDS boundary
as shown in Fig. 1, where m1;m2, and m3 are the surface densities,
x1; x2, and x3 are the displacements of masses, c1 and c2 are the

damping constants per unit area, and k1 and k2 are the spring con-
stants per unit area, the motion equation for each mass can be
written as
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where p1 and p2 are the sound pressures defined at the centers of
the adjacent cells of incident and transmission sides and t is time.
The boundary conditions can be expressed as

v1 ¼ @x1
@t

; ð4Þ

v2 ¼ @x3
@t

; ð5Þ

where v1 and v2 are the particle velocities on the boundaries. Eqs.
(1)–(3) can be approximated by the central difference scheme as
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where n is the time step and Dt is the time interval of discretization.
According to Eqs. (4) and (5), the particle velocities on the bound-
aries of incident and transmission sides can be approximated by

vnþ1=2
1 ¼ xnþ1

1 � xn1
Dt

; ð9Þ
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3 � xn3
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Displacements x1; x2, and x3 of a new time step can be obtained
from Eqs. (6)–(8) and, subsequently, particle velocities on the
boundaries can be updated by substituting these displacements into
Eqs. (9) and (10). By using the velocities, p1 and p2 of a new time
step can be obtained with the FDTD calculation.

Additionally, a situation where an MDS boundary is not located
in parallel with the cell grids are calculated following the proce-
dure shown in Ref. [14], which is depicted in Fig. 2. First, the
boundary is discretized with a staircase approximation, and the
particle velocity in the direction normal to the original boundary
at a particle-velocity reference point is calculated from the sound

Fig. 1. Discretized sound field with an MDS boundary. Fig. 2. An MDS boundary located in an orientation non-parallel to the cell grids.
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