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A B S T R A C T

This study decomposes the discretization error in the random finite element method into finite element and
random field discretization errors. Two numerical problems are considered: a soil column and a retaining wall
with spatially variable undrained shear strength. It is observed that these two errors tend to accumulate if the
spatial averaging (SA) method is adopted for discretization, whereas the two errors may not accumulate if the
midpoint (MP) method is adopted. Therefore, MP may outperform SA. Suggestions for mesh sizes are provided,
but these suggestions may be restricted to these two numerical problems.

1. Introduction

The random finite element method (RFEM) [1–5] is increasingly
used in geotechnical engineering. The interest in the RFEM has
stemmed from the fact that the spatial variability of soil properties can
play a key role in the behavior of geotechnical structures. The RFEM
explicitly accounts for spatial variability by combining random fields
[6], finite element method (FEM), and Monte Carlo simulation. In the
context of spatial variability in shear strength, the effect of spatial
variability goes beyond the so-called averaging effect [6], which re-
duces the variance of the response. The spatial variability in shear
strength also leads to nonclassical failure mechanisms, because the
failure path tends to seek out weak zones (e.g., [7,8]). The effect of
seeking out weak zones shifts the mean response to the unconservative
side (e.g., [9–12]).

The RFEM must meet a number of challenges for its implementa-
tion. A major challenge is the discretization error. The discretization
error is the discrepancy between the true solution for the continuous
mathematical model and the approximate RFEM solution. In the RFEM,
this error may come from three possible sources: (a) random field (RF)
discretization error, (b) RF truncation error, and (c) finite element (FE)
discretization error:

1. The RF discretization error and RF truncation error: The RF dis-
cretization error and RF truncation error are purely associated with
RF simulations. Some RF simulation methods induce a discretization
error (e.g., the local averaging subdivision (LAS) [13]), while some
others induce a truncation error (e.g., the Karhunen–Loève (KL)

expansion [14]). Note that RFEM methods that use the KL expansion
not only have the RF truncation error but also the RF discretization
error. This is because when the random field simulated by the KL
expansion is fed into FEM, the FE mesh cannot accommodate a
continuous random field. The random field needs to be discretized
even if the KL expansion is adopted.

2. The FE discretization error: The FE discretization error is purely
associated with FEM. The FE discretization error is due to the mesh
discretization of stress/strain and exists even in deterministic FEM.

This study focuses on the RF discretization error and FE dis-
cretization error. The RF truncation error is not the focus, because this
error is minimized during the RF simulation process in this study.

In the area of the stochastic finite element method (SFEM) in the
structural reliability community, the issue of discretization errors has
been extensively investigated. Note that the RFEM is in fact a Monte
Carlo-based SFEM, and both methods face the same discretization
challenge. Cherng and Wen [15] stated that the required element size to
control discretization errors depends on the structural type, response of
interest, discretization method, and correlation structure of the random
field (both to be explained in a later section). A dimensionless ratio of
the element size to the scale of fluctuation (SOF) is often reported in the
literature, where the SOF quantifies the distance over which property
values are significantly correlated. For a beam or a plate, the ratio
should not exceed one-eighth to one-half (e.g., [16–19]). Since main-
taining this ratio for small SOFs may be computationally burdensome,
Liu [20] obtained an equation to estimate the solution of a fine mesh
using the solution of a coarse mesh. The work was then extended in
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[21] to propose an adaptive random field mesh refinement. Deodatis
and Shinozuka [22] eliminated the need for the RF discretization by
deriving an exact expression for the finite element stiffness matrix in
terms of weighted integrals of the random field. It was, however, ar-
gued that the method still employs a hidden discretization, and more-
over, the work seems limited to elastic structures [23,24].

In contrast to the structural reliability, the issue has not received
much attention in the geotechnical community, although soils exhibit
far more spatial variability than structural materials do. A few studies
have addressed the issue of discretization errors. Hicks and Onisiphorou
[25] mapped random fields onto the integration points (Gauss points),
instead of the elements themselves, to alleviate this issue. Spencer [26]
suggested that (element size)/SOF≈¼ is the practical maximum to
keep the error acceptable. To the authors’ knowledge, only two studies
in the geotechnical community have been fully devoted to the issue of
discretization errors for spatially variable undrained shear strength:
Ching and Phoon [27] and Huang and Griffiths [14]. They both con-
sidered a similar problem (soil column subjected to axial compressive
loading). However, their recommended ratios for (element size)/SOF
are very different. In fact, Ching and Phoon’s [27] recommendation is
almost ten times smaller than Huang and Griffiths’ [14]. Apart from this
difference, what is less understood in both studies, and in past studies,
is how the two components of the discretization error (the FE and RF
discretization errors) interact with each other and affect the solution.
Insights from this can help to reduce the discretization error in a more
effective way. The present paper therefore aims to address the following
questions:

1. Do the two components of the discretization error accumulate or
compensate?

2. Which component is larger?
3. Do the answers to #1 and #2 depend on the RF discretization

method such as the spatial averaging method and midpoint method?

These questions are investigated using two numerical geotechnical
problems: the compressive strength of an undrained soil column and the
active lateral force on an undrained retaining wall. Although both
problems yield qualitatively similar conclusions, the conclusions may
be restricted to these two numerical problems. More research is re-
quired to obtain generic conclusions. The present paper also examines
the recommendations proposed by Ching and Phoon [27] and Huang
and Griffiths [14] for these two numerical problems. In the end, sug-
gestions are provided for the allowable mesh size to achieve a certain
error tolerance for these two problems. These suggestions may be re-
stricted to these two numerical problems. The suggestions may no
longer be valid if, for example, a different autocorrelation model or a
different response quantity of interest is considered.

2. Random field model for soil spatial variability

Vanmarcke [6] proposed that the spatial variability of soil can be
modeled as a random field. In most applications, the random field is
assumed to be second-order stationary. This assumption allows char-
acterizing the random field model based on limited site investigation
data. The characterization of a second-order stationary random field
requires three parameters: (1) the mean, (2) variance, and (3) auto-
correlation function. The first two are constant everywhere. The third,
which defines the correlation between two points, is a function of their
separation distance rather than their absolute positions. One of the
common autocorrelation functions used in the geotechnical engineering
literature is the single exponential model [6,28]. In two dimensions, it
defines the correlation between two points with a separation distance of
Δx and Δz as follows:
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where δx and δz are, respectively, the SOFs in the x and z directions (x
and z are the horizontal and vertical coordinates). Some of the other
common autocorrelation functions are the squared exponential, cosine
exponential, second order Markov, and binary noise models [28–30].
As mentioned by Cherng and Wen [15], the type of an autocorrelation
function may influence the required element size. For example, Ching
and Phoon [27] showed that the required element size for the single
exponential model is considerably smaller than that for the squared
exponential model. The present study does not address the effect of the
autocorrelation function type and only considers the single exponential
model with δx= δz= δ. Note that Eq. (1) is a “separable” single ex-
ponential model, which is known to generate streaks along the hor-
izontal and vertical directions. A “radial” single exponential model [26]
is free from this issue, but it is not presented in the present study. Most
of the qualitative conclusions in the present paper hold true for the
radial single exponential model. However, the required element size for
the radial form may be different than that for the separable form.

The Fourier series method (FSM) [31,32] is employed to simulate a
two-dimensional stationary lognormal random field W(x,z) over a do-
main of size Lx× Lz with a point mean= μ and point variance= σ2
(coefficient of variation=V= σ/μ). This stationary lognormal random
field simulation is achieved by taking the exponential of the underlying
stationary normal random field with a mean= λ= ln[μ/(1+V2)0.5]
and variance= ξ2= ln(1+V2):
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where Re[.] denotes the real part of the enclosed complex number, and
amn and bmn are independent zero-mean normal random variables with
variance σ2mn. For the separable single exponential model, σ2mn is given
by [31]:
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where qx= Lx/δx and qz= Lz/δz. Since the infinite sum in Eq. (2) must
be truncated to a finite sum, Jha and Ching [31] suggested that it is
sufficient to sum up to an |m| value (or an |n| value) corresponding to:

⎡

⎣
⎢

− − −
+

⎤

⎦
⎥ = −1

q
1 exp( q )( 1)

1 m π /q
10

x

x
m

2 2
x
2

5

(4)

without a noticeable RF truncation error. Therefore, it is expected that
the impact of the RF truncation error is minimized, so the effect of the
RF discretization error can be isolated in the present study.

In the midpoint (MP) discretization method, the field value for an
element is represented by W(x,z) which is simulated at the centroid of
the element. In the spatial averaging (SA) discretization method, the
field value for an element is represented by the spatial average of the
field over the element, Wave. For the MP method, one can readily im-
plement it in the FSM using Eq. (2). For the SA method, Jha and Ching
[31] obtained an analytical expression in the FSM to directly simulate
the spatial average of the normal random field over a rectangular ele-
ment (see Eq. (16) in [31]), and the exponential of this average is taken.
While both MP and SA methods preserve the mean of a normal field, the
SA method reduces the mean of a lognormal field. In this case, a cor-
rection factor [2] (1+V2)0.5×(1−Γ2) is multiplied to Wave to ensure the
mean of the lognormal field remains unchanged, where Γ2 is the var-
iance reduction factor [6] for the spatial averaging effect within an
element. For the single exponential model in Eq. (1), Γ2 for an element
with side lengths Δxe× Δze is:
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