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A B S T R A C T

Remotely sensed observations of seasonal greenness dynamics represent a valuable tool for studying vegetation
phenology at regional and ecosystem-level scales. We investigated the seasonal variability of forests in Italy,
examining the different mechanisms of phenological response to biophysical drivers. For each point of the Italian
National Forests Inventory, we processed a multitemporal profile of the MODIS Enhanced Vegetation Index.
Then we applied a multivariate approach for the purpose of (i) classifying the Italian forests into phenological
clusters (i.e. pheno-clusters), (ii) identifying the main phenological characteristics and the forest compositions of
each pheno-cluster and (iii) exploring the role of climate and physiographic variables in the phenological timing
of each cluster. Results identified four pheno-clusters, following a clear elevation gradient and a distinct se-
paration along the Mediterranean-to-temperate climatic transition of Italy. The “High-elevation coniferous” and
the “High elevation deciduous” resulted mainly affected by elevation, with the former characterized by low
annual productivity and the latter by high seasonality. To the contrary, the “Low elevation deciduous” showed to
be mostly associated to moderate climate conditions and a prolonged growing season. Finally, summer drought
was the main driving variable for the “Mediterranean evergreen”, characterized by low seasonality. The dis-
crimination of vegetation phenology types can provide valuable information useful as a baseline framework for
further studies on forests ecosystem and for management strategies.

1. Introduction

Monitoring vegetation phenology helps to detect the changes in
ecosystem functions, providing baseline data to track vegetation dy-
namics related to events such as drought, fire, spring frost, land use
changes, climate oscillations, etc. (Peñuelas et al., 2004; Xiao et al.,
2015; Bascietto et al., 2018; Workie and Debella, 2018). The recent
establishment of the USA National Phenology Network (USA-NPN;
https://www.usanpn.org/), the Pan European Phenology Project
(PEP725; http://www.pep725.eu/), the GLOBE phenology project
(https://www.globe.gov/web/phenology-and-climate), suggest the
need for a greater understanding of biological responses to a changing
environment at different geographical scales (Lim et al., 2018). Remote
sensing observations of seasonal greenness dynamics take advantage of
the potentialities of high temporal resolution satellites (like MODIS)
and represent a valuable tool for studying vegetation phenology at
scales consistent with ecosystem-level processes and regional climate
information (White and Nemani, 2006; Polgar Caroline and Primack
Richard, 2011; D’Odorico et al., 2015; Xu et al., 2017).

Remotely-sensed phenology is the study of the timing of vegetation
seasonal pattern of growth, senescence and dormancy, in a spatially
aggregated form (e.g. pixel size of metres to km) (Gonsamo et al., 2012;
Broich et al., 2015). Observed remotely-sensed phenology patterns are
the response of heterogeneous land surface conditions, integrating
multiple species, age classes and canopy layers within the ecosystem
(D’Odorico et al., 2015).

Satellite-based green indices, such as the Normalized Difference
Vegetation Index, NDVI (Rouse et al., 1973) and the Enhanced Vege-
tation Index, EVI (Huete et al., 2002), represent effective proxies of
vegetation photosynthetic performance by exploiting the interaction of
visible light with leaf pigments, and of near-infrared (NIR) energy with
internal leaf and canopy structures (D’Odorico et al., 2015). NDVI is the
most common green index used to study vegetation; however, it tends
to saturate over dense canopies, like forested areas, losing sensitivity
(Gitelson, 2004). EVI was hence proposed as a modified NDVI, having a
larger dynamic range and atmospheric and soil background correction.
As a consequence, EVI is more responsive than NDVI to detect forest
seasonal variations, especially for dense and large canopy background
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such as broadleaved forests (Huete et al., 2014; Broich et al., 2015;
Wang et al., 2017).

The time series analysis of vegetation indices allows for quantifying
intra-annual changes in vegetation activity timing and intensity
(Lasaponara, 2006; Balzter et al., 2007; Suepa et al., 2016; Wu et al.,
2017), relating these changes to environmental processes and dynamics
(Rojas et al., 2011; Bajocco et al., 2017; Bascietto et al., 2018), mea-
suring the start, the end and the length of the growing season (Reed
et al., 1994; Balzarolo et al., 2016; Baumann et al., 2017; Garonna
et al., 2018), along with assessing the plant communities rhythms of
growth, greening and senescing (Puppi, 2011).

The phenological timing of plant communities is regulated by the
seasonal period strategic for growth and reproduction according to
synchronizing (e.g. temperature, rain, frost, drought risks, topography,
latitude) and asynchronizing (e.g. resource competition, seed dispersal,
pollination) factors (Wheelwright, 1985; Primack, 1985). The syn-
chronizing factors tend to homogenize the phenological behaviour of
different species, such that plant communities can be identified by a
characteristic phenological pattern (Puppi, 2011). Macroecological in-
vestigations have shown that similar phenological responses char-
acterize species belonging to similar eco-regions (Thuiller et al., 2004;
Chuine, 2010) due to their plastic response to some environmental
conditions such as temperature, water availability or photoperiod
(Chuine, 2010). Remote sensing provides ideal data to base regional
vegetation phenology classifications on, since they consistently mea-
sure vegetation processes and functions in time and space (Wessels
et al., 2009).

Given the huge amount of remotely sensed data, effective com-
puting strategies are necessary to exploit the phenological information
provided by long-term time series and to reduce data redundancy and
processing complexity (Siachalou et al., 2015). Several studies used
phenological clustering to classify pixels with an identifiable seasonal
behaviour. White Michael et al., 2005 used k-means clustering in order
to identify NDVI-based pheno-regions with similar vegetation phe-
nology and climate, aiming to recognize areas with a minimized
probability of non-climatic forcing for long-term phenological mon-
itoring; Mills et al. (2011) proposed an approach (Forest Incidence
Recognition and State Tracking, FIRST) based on clustering NDVI data,
to provide an early warning system for differentiating between normal
and abnormal phenology; Bajocco et al. (2015) derived a phenological
map by hierarchical clustering homogenous territorial units of fuel in
terms of seasonal NDVI Fourier harmonics; finally, Hoagland et al.
(2018) derived NDVI-based pheno-classes and pheno-clusters to dis-
tinguish owl sites from random sites, and create habitat suitability
maps.

Within this framework, we applied a multivariate clustering ap-
proach to a long-term MODIS EVI time-series (2001–2017) for in-
vestigating the phenological variability of forests in Italy and examining
the different mechanisms of phenology response to biophysical drivers.
The objectives of this study are: (i) classifying the Italian forests into
phenological clusters (i.e. pheno-clusters), (ii) identifying the main
phenological characteristics and the forest compositions of each pheno-
cluster and (iii) exploring the role of climate and physiographic vari-
ables in the phenological timing of each cluster.

2. Material and methods

2.1. Study area

Italy is located in southern Europe, extending for about
300,000 km2; it consists of the entirety of the Italian Peninsula and the
two Mediterranean islands of Sicily and Sardinia, in addition to many
smaller islands. Italy is largely surrounded by the sea, with a coastline
of about 7600 km, including the islands. The country features about
23% flat zones (0–300 m a.s.l.), 42% hilly areas (300–800 m a.s.l.), and
35% mountainous regions (> 800 m a.s.l.) that are grouped in two

major mountain ranges (the Alps and the Apennines). Given the long-
itudinal extension of the peninsula and the mountainous internal con-
formation, climate of Italy is highly variable. In most of the inland
northern and central regions, the climate ranges from humid sub-
tropical to humid continental and oceanic. In particular, the climate of
the Po valley geographical region is mostly continental, with harsh
winters and hot summers. The coastal areas of Liguria, Tuscany and
most of the South is generally characterized by Mediterranean climate.
Conditions on peninsular coastal areas can be very different from the
mountainous inner zones, particularly during the winter months when
the higher altitudes tend to be cold, wet, and often snowy. The coastal
regions have mild winters and warm and dry summers. Average winter
temperatures vary from 0 °C on the Alps to 12 °C in Sicily, while the
average summer temperatures range from 20 °C to over 25 °C.

According to the Corine Land Cover (CLC) map of 2006, the main
land uses are: agricultural lands (47.1%), subdivided into arable lands
(22.8%), permanent crops (8.6%) and permanent pastures (15.7%), and
forests (31.4%). The most widespread broadleaved forest categories
are: Quercus petraea, Q. pubescens and Q. robur (12.6%); Fagus sylvatica
(12%); Q. cerris and Q. frainetto (11.7%). Among the coniferous forests,
the most common are: Picea abies (6.8%), Larix decidua and Pinus
cembra (4.4%); Pinus nigra and P. leucodermis (2.7%); and P. pinea and P.
pinaster (2.6%).

2.2. Forest types data

The Italian National Forests Inventory (INFI) was realized according
to three phases of sampling. In the first phase Italy was covered by a
grid of 306,831 cells, each being 1 km2 wide and a random point was
selected in each cell. In the second phase, on the basis of aerial photos,
the first-phase points were photo-interpreted. A set of randomly sam-
pled points were assigned into a forest type (FT) by ground inspection if
a surrounding area larger than 5000 m2 matched the same FT. In the
third phase a sample of approximately 7,000 second phase-points was
randomly selected and forest metrics were measured on ground (see
Fattorini et al., 2006 for detail). In this work, we referred to the third
phase INFI points and the forest types (FTs) considered are listed in
Table 1.

2.3. Phenology data

The enhanced vegetation index (EVI) was developed to optimize the
vegetation signal through a decoupling of the canopy background
signal and also reducing the atmosphere effects (Huete et al., 2014;
Broich et al., 2015; Wang et al., 2017). EVI is computed as follows:

EVI = G x (ρNIR − ρred) / (ρNIR + C1 × ρred− C2 × ρblue + L)

Where G is the gain factor, ρ is the surface reflectance (atmospherically

Table 1
List of the INFI forest types (FTs) analyzed.

Forest types

CON1 - Larix decidua, Pinus cembra Coniferous
CON2 - Picea abies
CON3 - Abies alba
CON4 - Pinus sylvestris, Pinus montana
CON5 - Pinus nigra, P. laricio, P. leucodermis
CON6 - Pinus pinea, P. pinaster
DECB1 - Fagus sylvatica Deciduous broadleaved
DECB2 - Quercus petraea, Q. pubescens, Q. robur
DECB3 - Quercus cerris, Q. frainetto, Q. trojana
DECB4 - Castanea sativa
DECB5 - Ostryacarpinifolia
DECB6 - Hygrophilous woods
EVEB1 - Quercus ilex Evergreen broadleaved
EVEB2 - Quercus suber

S. Bajocco et al. Int J Appl  Earth Obs Geoinformation 74 (2019) 314–321

315



Download English Version:

https://daneshyari.com/en/article/11263701

Download Persian Version:

https://daneshyari.com/article/11263701

Daneshyari.com

https://daneshyari.com/en/article/11263701
https://daneshyari.com/article/11263701
https://daneshyari.com

