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a  b  s  t  r  a  c  t

We  extend  the  well-known  and widely  used  exponential  random  graph  model  (ERGM)  by including  nodal
random  effects  to  compensate  for  heterogeneity  in  the  nodes  of a network.  The  Bayesian  framework  for
ERGMs  proposed  by Caimo  and  Friel  (2011)  yields  the  basis  of  our  modelling  algorithm.  A central  question
in  network  models  is  the  question  of  model  selection  and following  the  Bayesian  paradigm  we  focus  on
estimating  Bayes  factors.  To  do so  we  develop  an approximate  but feasible  calculation  of the  Bayes  factor
which  allows  one  to  pursue  model  selection.  Three  data  examples  and  a small  simulation  study  illustrate
our mixed  model  approach  and the  corresponding  model  selection.
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1. Introduction

The analysis of network data is an emerging field in statis-
tics which is challenging both model-wise and computationally.
Recently Goldenberg et al. (2010), Hunter et al. (2012), Fienberg
(2012), and Salter-Townshend et al. (2012), respectively, published
comprehensive survey articles discussing statistical approaches,
challenges and developments in network data analysis. We  also
refer to the monograph of Kolaczyk (2009) for a comprehensive
introduction to the field.

In this paper, we consider networks represented as a n × n
dimensional adjacency matrix Y, where the element Yij = 1, if an
edge exists between vertex i and vertex j, and Yij = 0 otherwise,
with i, j ∈ {1, . . .,  n} and i /= j, that is there is no connection from
a vertex to itself. With n we denote the number of vertices in the
network and for simplicity we assume undirected edges, that is
Yij = Yji. Therefore, the matrix Y is symmetric and for simplicity it
is sufficient to consider the upper triangle of Y only, that is Yij, j > i.
Our approach equally applies to non-symmetric adjacency matri-
ces corresponding to directed graphs. A concrete realization of Y is
denoted with y.

With respect to the available statistical models for modelling
cross-sectional network data one may  roughly distinguish between
two strands, (a) models which explain the existence of an edge
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purely with external nodal covariates or random effects and (b)
models where the existence of an edge also depends on the local
network structure. The first strand of models is phrased as p1 and p2
models tracing back to Holland and Leinhardt (1981). Specifically,
in the p1 model we set

logit[P(Yij = 1)] = log

{
P(Yij = 1)

1 − P(Yij = 1)

}
= ˛i + ˛j + zt

ijˇ, (1)

where zij denotes a set of covariates relating to the vertices i and
j and ˛i and ˛j are nodal effects, here assuming undirected edges.
Since the number of parameters increases with increasing network
size n, van Duijn et al. (2004) proposed to replace the  ̨ parameters
in (1) by random effects, see also Zijlstra et al. (2006). This yields
the p2 model

logit[P(Yij = 1|�)] = �i + �j + zt
ijˇ, (2)

� = (�1, . . .,  �n)t∼N(0, �2
�In) (2)

with In as n dimensional unit matrix. A general principle with this
approach is that vertices (or actors in the network, respectively) are
not considered as homogeneous but heterogeneous, though their
heterogeneity is not observable but latent and expressed in the
node specific random effects �i, i = 1, . . .,  n.

Both, the p1 and the p2 model lie within the classical generalized
linear (mixed) model framework which allows estimation using
standard statistical software. The p2 models also allow for Bayesian
estimation approaches, see for example Gill and Swartz (2004).
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The second strand in statistical network modelling is based on
the so called exponential random graph model (ERGM) proposed
by Frank and Strauss (1986). Here we model directly the network
using the likelihood function

P(Y = y|�) = f (y|�) = q�(y)
�(�)

= exp{�ts(y)}
�(�)

, (3)

where � = (�0, . . .,  �p)t is the vector of model parameters and
s(y) = (s0(y), . . .,  sp(y))t is a vector of sufficient network statistics
like the number of edges or two-stars in a network, see for example
Snijders et al. (2006). In Eq. (3) the term �(�) denotes the normal-
izing constant, that is

�(�) =
∑
y ∈ Y

exp{�ts(y)}

and is accordingly the sum over 2
( n

2 )
potential undirected graphs

and therefore numerically intractable, except for very small graphs.
Early fitting approaches are based on the pseudolikelihood idea
proposed by Strauss and Ikeda (1990). More advanced are MCMC
based routines proposed by Hunter and Handcock (2006) based on
the work of Geyer and Thompson (1992). A fully Bayesian approach
to estimate ERGMs has been developed by Caimo and Friel (2011).

Model (3) allows for a conditional interpretation by focusing on
the occurrence of a single edge between two nodes. To be specific
we obtain

logit[P(Yij = 1|Ykl, (k, l) /= (i, j); �)] = �tsij(y), (4)

where sij(y) denotes the vector of so called change statistics

sij(y) = s(yij = 1, ykl, (k, l) /= (i, j)) − s(yij = 0, ykl, (k, l) /= (i, j)).

We  refer to Robins et al. (2007a,b), and the rather recent work of
Lusher et al. (2013) for a deeper discussion of exponential random
graph models.

Contrasting Eq. (4) with the p1 and p2 model given in Eqs. (1) and
(2) it becomes obvious that the ERGM in contrast to the p1 and p2
models take the network structure into account while considering
the nodes to be homogeneous. When modelling network data this
means that all possible heterogeneity in the network nodes (that is
the actors in the network) is included as covariates in the model and
influence the (global) structure of the network. Since homogeneity
of the nodes have led from p1 to p2 models, we want to pursue
the same modelling exercise by allowing for latent node specific
heterogeneity in exponential random graph models. To do so, we
combine the p2 model (2) with the ERGM (4) towards

logit[P(Yij = 1|Ykl, (k, l) /= (i, j); �, �i, �j)] = �tsij(y) + �i + �j (5)

with � = (�1, . . .,  �n)t and �i
i.i.d.∼ N(��, �2

�
), i = 1, . . .,  n. The

parameter �� captures the average propensity in the network for
forming a tie. Therefore �0, which is usually the parameter associ-
ated with the edges statistic, is excluded from �, i.e. � = (�1, . . .,  �p)t

here. In terms of the likelihood function for the whole network we
obtain from (5)

P(Y = y|�, �) = f (y|�, �) = q�,�(y)

�(�, �)
= exp{�ts(y) + �t t(y)}

�(�, �)
, (6)

where t(y) contains the degree statistics of the n vertices, i.e.
ti(y) =

∑n
j=1yij, for i = 1, . . .,  n. That is we fit an exponential ran-

dom graph model with random, node specific effects accounting
for heterogeneity. The model in Eqs. (5) and (6) falls in the general
class of Exponential-family Random Network Models proposed by
Fellows and Handcock (2012) but unlike their model we treat the
node specific effect as latent and we pursue a fully Bayesian estima-
tion. We  also refer to Krivitsky et al. (2009) who propose a model

with actor specific random effects based on a latent cluster model.
The authors also propose node specific random effects. We  follow
this line and give further interpretability of the effects. A central
issue in model extensions is the question of model selection. We
emphasize this point in the paper by comparing models with and
without nodal effects using the Bayes factor as model selection cri-
terion. However, calculation of the Bayes factor suffers from the
above mentioned problem in exponential random graph models in
that the normalization constant �(·) is numerically infeasible. We
therefore propose an approximate calculation of the Bayes factor
and show in a simulation study its usability for model selection.

For estimation and model selection of model (6) we  extend
the fully Bayesian approach from Caimo and Friel (2011). The
developed estimation routine is based on the numerical work of
Caimo and Friel (2014) with their R (R Core Team, 2015) package
Bergm (see http://cran.r-project.org/web/packages/Bergm). Our
algorithms for model fitting and selection will be included in the
Bergm package.

The paper is organized as follows. In Section 2 we  derive a fully
Bayesian formulation of the model. This is followed by a detailed
description of the MCMC  based estimation routine. Section 3 deals
with the issue of model selection using Bayes factors. Three data
examples and some simulation results are presented in Section 4.
Finally Section 5 concludes with a discussion.

2. Bayesian model formulation and estimation

Before proposing a fully Bayesian formulation for model (6)
bear in mind that the normalizing constant �(�, �) is numer-
ically infeasible to calculate except for small networks so that
numerically demanding simulation based fitting routines need to
be employed. We  follow a fully Bayesian approach by imposing a
prior distribution on � = (�1, . . .,  �p)t. The posterior of interest for
the Bayesian exponential random graph model with nodal random
effects in (6) then becomes

p(�, �, ��, �2
�|y) =

f  (y|�, �)p(�)p(�|��, �2
�

)p(��)p(�2
�

)

p(y)
, (7)

where p(�) is the prior distribution of � and p(�|��, �2
�

) the prior

for the random nodal effects �. We  assume the nodal effects to be
independent and identically normally distributed, that is

�i∼N(��, �2
�), for i = 1, . . .,  n

and accordingly we use � ∼ N(0, �2Ip), with Ip denoting the p-
dimensional unity matrix and �2 chosen such that the prior
distribution is flat. For the hyper prior distribution p(��) of the
mean �� we assume a normal distribution centred at 0, that is

��∼N(0, �2).

The hyper prior p(�2
�

) of the variance �2
�

is assumed to be an inverse
gamma  distribution, that is

�2
�∼IG(a, b).

Finally, the parameters �2, a and b are all constants and chosen in
a way  that results in flat hyper prior distributions. Fig. 1 illustrates
this Bayesian model formulation.

It is important to note, that the posterior distribution in (7) is so-
called doubly-intractable. This is because, firstly, it is not possible
to evaluate the posterior density (7) due to p(y), the marginal likeli-
hood or evidence, being intractable. Secondly, it is also numerically
infeasible to calculate the normalizing constant �(�, �) in the like-
lihood f(y|�, �) except for very small network graphs. Similar to the
algorithm proposed by Caimo and Friel (2011) we  use the so-called
exchange algorithm from Murray et al. (2006) to draw samples from
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