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1. Introduction

With the necessity of high-energy and high-power battery
packs for different applications, such as stationary energy storage
systems (SESS) or electric vehicles (EV), cells must be connected in
series and parallel. Due to safety reasons (e.g. over and under
voltage), cell balancing and ageing issues, supervision of each cell is
indispensable. For this purpose, the battery management system
(BMS) is used. The BMS supervises single-cell voltages, current and
temperatures in a battery pack to guarantee compliance with cell
limits. When a cell exceeds the so-called safe operating area (SOA),
the BMS limits the power, or shuts down the system completely
before an uncontrollable state is obtained. Beside safety manage-
ment and cell balancing, other required functions including
thermal management, communication with a higher-level control
unit, state of charge (SOC) estimation, state of health (SOH)
estimation and state of available power prediction are important
features of a BMS. All these functions are currently being
investigated and reported in the literature [1–3]. Due to different

applications and purposes of these functions, their validation and
test procedures differ, which not allows a comparison of the
algorithms or functionalities. Therefore, we introduce the first
proposal for the validation of BMS functionalities. The developed
methods are open for discussion and are available on our
homepage for open usage.1 As the first part, a method for the
validation and evaluation of SOC estimation algorithms is
presented.

Within the literature, various algorithms for SOC estimation are
validated by different methods without further benchmarking.
However, a comparison of these algorithms is not possible. Since
the area of application is multilateral, shortcomings of the
estimators are often not considered in the validation process. An
important issue in the validation is the determination of a
reference SOC to compare the estimated SOC with a reliable value.
A common method to measure the reference SOC is the coulomb
counter (Eq. (1)). In this study the resulting SOC is defined as

SOCðtÞ ¼ SOC0 þ
1

Cact

Z t

t¼0
iðtÞdt (1)
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A B S T R A C T

Several state of charge estimation algorithms have been developed and validated in the past. However,

due to varying validation methods, the results cannot be compared. This paper presents an approach for

a generalised validation and benchmark method for state of charge estimation algorithms. The

independence of standardised driving cycles is obtained by developing a synthetic load cycle. To do so, a

frequency analysis is performed for 149 different driving cycles and the five major time constants are

identified at 55.8 s, 9 s, 5.1 s, 3.8 s and 1 s. Using the synthetic load profile, three validation profiles are

created. In addition to low- and high-dynamic behaviour, long-term stability is considered at five

different temperatures (�10 8C, 0 8C, 10 8C, 25 8C and 40 8C). During the long-term test, the temperature

varies between �10 8C and 40 8C. To ensure comparability, a quantitative rating technique is introduced

for estimation accuracy, transient behaviour, drift, failure stability, temperature stability and residual

charge estimation to evaluate the performance of different state estimation algorithms. Furthermore, the

benchmark can be used to optimise the state estimator, such as a linear and an extended Kalman filter

examined within this study.
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where SOC0 corresponds to the initial SOC, Cact to the actual
measured capacity of the cell, i(t) to the load current and t to the
time of operation.

One issue is that, mostly, the same current signal is used to
calculate the reference SOC and to estimate the SOC with the
algorithm [4–8]. An offset-afflicted measurement causes a drift in
the reference, calculated by Eq. (1). When the algorithm is not
able to correct this drift, the estimation follows the offset-
influenced reference. Other algorithms, for example, open circuit
voltage (OCV)-based algorithms, may correct the error, but when
using only one current sensor, it is not possible to distinguish
between the correct and incorrect SOC (Fig. 1a). This shortcoming
can be addressed by using two different sensors for the reference
and for the algorithm [9–12]. Thereby, the current sensor for the
reference must be more accurate than the sensor for the
algorithm. In Fig. 1b, this concept is depicted schematically.
The estimation based on the BMS current measurement (Fig. 1b,
sensor 1) drifts apart, while the algorithm partly compensates for
the error.

By determination of the reference SOC using a coulomb counter,
the finite sample rate causes an error during dynamic loads. In
Fig. 1c the real current (dashed blue line) and the discrete current
measurement (red line) is shown. The green area symbolises the
resulting error, caused by the discrete measurement. Furthermore,
temperature changes and high currents can cause temporary
capacity (Cact) variations, which can affect the SOC calculation
(Eq. (1)). A possibly more accurate way to define a reference SOC is
a residual charge determination at the end of each test. Due to the
constant-current (CC) discharge, the accumulated error caused by
the finite sample rate and other influences can be minimised. This
approach is mandatory for long-term tests [12].

The behaviour of a battery is dependent on temperature, SOC
and current rate. Furthermore, the OCV changes with temperature,
depending on chemistry and SOC [13,14]. This is especially
important for OCV-based algorithms. Xing et al. [9] show the
influence of the temperature-dependent OCV of a lithium-iron-
phosphate (LFP) cell during state estimation with a Kalman filter
(KF). They showed high errors resulting from an incorrect OCV–
SOC relationship. To resolve this problem, different OCVs at

different temperatures were implemented in the battery model.
Consequently, due to possible temperature variations during
operation, the validation has to be performed at different and
varying temperatures. Otherwise, a reliable and accurate function
cannot be guaranteed [12].

The algorithms present in the literature are rarely validated
during the charging process. In common applications, the
discharge current is highly dynamic, while in the charge direction,
the current is comparably constant. As an example for neural
networks, this also leads to the need for separate training data for
the charge period. Other algorithms such as the dual KF [15–17] or
the sliding mode observer [18] also behave differently without any
dynamics [12,19]. These behaviours are often neglected.

Due to the wide measurement range of current sensors, the
measurement accuracy of small currents can be disturbed by noise
or by an offset of the sensor. These errors can affect the SOC
estimation. To address these issues, pauses and long-term tests
[20] are necessary. During these tests, the SOC based on the
coulomb counter increases due to the current sensor offset, while
the SOC estimation of the algorithm follows the reference SOC
[12]. Further investigations showed the estimation accuracy and
stability concerning variable ambient temperatures as well as
ageing effects. Additionally, the influence of initialisation and
parameter errors is mandatory for a proper validation [8].

The rest of the paper is organised as follows. To show the
necessity of validation under different conditions battery param-
eters and their dependency on temperature, current rate and SOC
are shown in Section 2. The independence of standardised driving
cycles is obtained by developing a synthetic load cycle (SLC) for the
validation scenarios in Section 3. All three scenarios are performed
at five different temperatures. Furthermore, an evaluation system
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BMS battery management system

CC constant-current
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Fig. 1. Validation issues: (a) validation with one current sensor; (b) validation with

an additional, more accurate, current sensor; (c) shortcomings of discretising and

resulting error.
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