Contents lists available at ScienceDirect

Journal of Energy Storage

journal homepage: www.elsevier.com/locate/est

A thermo-environmental study of hydrogen production from the steam reforming of bioethanol

Noureddine Hajjaji^{a,*}, Zouhour Khila^a, Ines Baccar^a, Marie-Noëlle Pons^b

^a Unité de Recherche Catalyse et Matériaux pour l'Environnement et les Procédés URCMEP (UR11ES85), Ecole Nationale d'Ingénieurs de Gabès, Université de Gabès, Rue Omar Ibn Alkhattab 6029 Gabès, Tunisia

^b Laboratoire Réactions et Génie des Procédés – CNRS, Université de Lorraine, 1, rue Grandville, BP 20451, 54001 Nancy cedex, France

ARTICLE INFO

ABSTRACT

Article history: Received 10 May 2016 Received in revised form 19 June 2016 Accepted 30 June 2016 Available online xxx

Keyword: Hydrogen Bioethanol steam reforming Energy analysis Exergy analysis Life cycle assessment Environmental impact The main objective of this study is to accurately report the conditions for sustainable hydrogen production via steam reforming of bioethanol. To this end, various engineering assessment tools are simultaneously applied (energetic and exergetic analyses and life cycle assessment). The process operating parameters were also varied to illustrate the energetic, exergetic and environmental sensitivity and to provide guidance for where research and development efforts should focus for process improvement. A base-case process operating under conditions recommended by simple investigation of chemical reactions was thoroughly investigated. The results show that this base case suffers from low performance. This is because the energetic, exergetic and environmental performances are comparatively lower than similar findings previously reported by other researchers for other reformates. The parametric investigation indicates that the process performance could be improved by a proper and rational combination of the reactor temperature and the steam-to-carbon ratio. A reforming a temperature of 800 °C and a steam-to-carbon ratio of 5 are recommended as the best conditions for the conversion of bioethanol-to-hydrogen. Such conditions ensure not only the lowest consumption of energy to generate a given amount of hydrogen but also the best environmental performance of the entire system.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Our current dependence on fossil fuels (FF) as an energy source has caused serious environmental problems, i.e., air pollution and greenhouse gas (GHG) emissions as well as natural resource depletion. However, development of renewable and clean energy resources is necessary for reducing pollution levels caused by those conventional fuels. At the international level, H₂ is considered as a major vector that could contribute to the reduction of the global dependence upon FF and to the reduction of atmospheric pollution [1]. H₂ is, also, considered as one of the most promising fuels for generalized use in the future, mainly because it is low-polluting, versatile and energy-efficient. H₂ is a high-quality energy carrier, which can be used with a high efficiency and zero or near-zero emissions at the point of use [2]. So far, H₂ is produced almost entirely from FF (96%), such as natural gas (48%), heavy oils and naphtha (30%), etc. [3]. In the present case, the same amount of CO₂

* Corresponding author. E-mail address: Hajjaji.nour@gmail.com (N. Hajjaji).

http://dx.doi.org/10.1016/j.est.2016.06.010 2352-152X/© 2016 Elsevier Ltd. All rights reserved. as that formed by combustion of those fuels is released during H_2 production. However, the transition to an H_2 economy requires it to be produced from renewable resources and with ecofriendly processes to build a sustainable energy system. Thus, in the last decade, there has been a significant amount of research into the production of H_2 from renewable sources efficiently at low cost and with minimum environmental impact.

Among various renewable feedstock alternatives for H_2 production, bioethanol has attracted much attention because of its relatively high H_2 content, availability, ease of storage, handling and safety, including its low comparative toxicity [4,5]. Moreover, bioethanol can be produced renewably from several biomass sources such as (i) sugar or starch crops (sugar beet, sugar cane, corn and wheat, etc.), (ii) lignocellulosic biomass, and (iii) algae biomass [6]. It should be noted that using H_2 from bioethanol is more efficient than bioethanol used directly in internal combustion engines and/or blended with gasoline [7]. The upgrading of raw bioethanol (crude bioethanol) requires various purification steps prior to be blended with gasoline or supplied to an internal combustion engine [7]. In fact, fuel grade bioethanol needs to be water-free, thus the purification requires distillation beyond the

Nomenclature

Notatio	2
NOLALIO	
ADP	Abiotic depletion potential
AP	Acidification potential
ATR	Autothermal reforming
CCD	Central composite design
COPRO	X CO preferential oxidation reactors
D	Total molar flow rate
DOE	Design of experiments
EP	Eutrophication potential
Fx	Exergy
EAETD	Erech water aquatic ecotoxicity potential
	Fossil fuels
ГГ	Functional unit
FU	
GHG	Greenhouse gas
GWP10	0 Global warming potential for time horizon 100
	years
Н	Molar enthalpy
HTP	Human toxicity potential
HT-WG	S High temperature shift reactor
LCA	Life cycle assessment
	Life cycle inventory
	Life cycle impact assessment
	Life Cycle impact assessment
	Lower heating value
LI-WGS	Low temperature shift reactor
m	Mass flow
MAETP	Marine aquatic ecotoxicity potential
n	Number of chemical species in the material stream
ODP	Stratospheric ozone depletion potential
Р	Pressure
PEMFC	Proton exchange membrane fuel cell
POCP	Photochemical ozone creation potential
POX	Partial oxidation
PSA	Pressure swing adsorption
0	Heat transferred
Q DC	Model response surface model
KS C	Molen entre ver
5	Molar entropy
SB	System boundaries
SG	Synthesis gas
SMR	Steam methane reforming
SR	Steam reforming
SRK	Soave-Redlich-Kwong equation of state
Т	Temperature
t.km	Ton.kilometers
TEP	Terrestrial ecotoxicity potential
W	Mechanical work
WCS	Water_gas shift
vuuu	Dradicted response
1	Fredicieu Tesponse
Z	Factor (Variable)
Subscripts	
M	Material stream
mix	Mixing part
Q	Heat transfer
phy	Physical part
W	Work exchange
chem	Chemical part
0	Reference conditions
-	

Superscripts

- l Liquid phase
- v Vapor phase
- 0 Pure component properties at standard conditions at T₀, P₀

Greek letters

- ε Molar standard chemical exergy
- h Efficiency
- β Axial level ("star point")
- $\alpha \;$ Stoichiometric coefficient of water

azeotropic point, and this is one of the major production costs of fuel-grade ethanol, consuming almost 3/4 of the energy used in the bioethanol production process[8-10]. Therefore, the use of raw bioethanol as a feedstock in H₂ production will minimize the heat consumed during the distillation process.

Several catalytic processes have been developed in recent years to convert bioethanol-to- H_2 by different routes, such as catalytic steam reforming (SR) [11–13], partial oxidation (POX) [14,15], autothermal reforming (ATR) [16–18], CO₂ reforming [19,20], etc. Among these reforming processes, SR of ethanol has a higher efficiency for H_2 production than the other reforming processes [21]. For this reason, many efforts have been made to improve the H_2 productivity (mole H_2 produced per mole of ethanol used in feed) in the SR of ethanol. However, most of the efforts in this field have been focused on chemical reaction investigations of the bioethanol SR [21–23] and/or researching catalysis in this system [11,12,24]. Little attention has been devoted to the energetic and environmental performances of an entire system that includes all of the steps involved in the production of H_2 via SR of bioethanol.

Hence, an SR system is considered efficient when the H_2 productivity of the system is high. This approach does not emphasize total energy consumption, i.e., the energy required to generate a given amount of H_2 . In an entire bioethanol-to- H_2 plant with heaters, reactors, steam generators, and so forth, the overall energy balance could be very endothermic, and H_2 production becomes energy intensive. Therefore, an energy analysis should be established to quantify the energy consumption and thereby the energetic performance of such a process. Moreover, in most bioethanol-to- H_2 studies no importance was given to the environmental impacts caused by the use of raw materials, material and energy (electrical, heat, etc.) within the entire system of H_2 production via bioethanol reforming. Manifestly, the design of an eco-friendly H_2 production system from bioethanol should include all environmental impacts generated by its entire life cycle.

In recent decades, there has been an increasing interest in using both energy and exergy analysis modeling techniques for energyutilization assessments. The energy analysis is the basic method of a process investigation. It is based on the first law of thermodynamics, which expresses the principle of the conservation of energy. Energy analysis has some inherent limitations, such as not accounting for degradation of the quality of energy through dissipative processes, and does not characterize the irreversibility of operations within the process [25]. The exergy analysis is a modern thermodynamic method used as an advanced tool for process evaluation [26]. Based on both the first and the second laws of thermodynamics, exergy analysis compensates for the inability of the energy analysis to reveal the losses of energy due to its thermodynamic imperfections, and it plays unique roles in revealing the reasons for, location of and direction of improvement for losses. Therefore, exergy analysis has been widely used in recent years in assessing the performance of various bioenergy production processes [27–31]. For example, Soltani et al. [29] applied exergy analysis to an externally-fired combined-cycle power plant integrated with biomass gasification. The authors showed that interactions between the components are not very strong and concluded that the focus for improving cycle performance should be on the heat exchanger and not the

Download English Version:

https://daneshyari.com/en/article/1133077

Download Persian Version:

https://daneshyari.com/article/1133077

Daneshyari.com