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A B S T R A C T

This article optimizes lithium-ion battery management in a datacenter to: (i) maximize the dollar savings
attainable through peak shaving, while (ii) minimizing battery degradation. To the best of the authors’
knowledge, such multi-objective optimal datacenter battery management remains relatively unex-
plored. We solve this optimization problem using a second-order model of battery charge dynamics,
coupled with a physics-based model of battery aging via solid electrolyte interphase (SEI) growth. Our
optimization study focuses on a classical feedforward-feedback energy management policy, where
feedforward control is used for peak shaving, and feedback is used for tracking a desired battery state of
charge (SOC). Three feedforward-feedback architectures are examined: a proportional (P) control
architecture, a proportional-integral (PI) architecture, and a PI architecture with a deadband in its
feedforward path. We optimize these architectures’ parameters using differential evolution, for real
datacenter power demand histories. Our results show a significant Pareto tradeoff between dollar savings
and battery longevity for all architectures. The introduction of a deadband furnishes a more attractive
Pareto front by allowing the feedforward controller to focus on shaving larger peaks. Moreover, the use of
integral control improves the robustness of the feedback policy to demand uncertainties and battery pack
sizing.

ã 2016 Elsevier Ltd. All rights reserved.

1. Introduction

This article examines the use of electrochemical batteries for
datacenter demand response (DR). The article focuses on
minimizing a Pareto combination of total electricity cost and
battery aging by optimizing the control policy used for demand
response. This work is motivated by the rapid growth of both the
datacenter industry and its electricity needs. The cost of energy is a
significant factor in datacenter operation. A large, energy efficient
datacenter may, for instance, need as much as 10 MW of electricity
and spend approximately $1 million on electricity bills per month,
which is 30–50% of its monthly operating cost [1]. The high
operating cost of purchasing electricity and the capital cost of the
power infrastructure to draw electricity from the grid is affected by
datacenter workload characteristics. Datacenter workloads often
fluctuate significantly due to scheduled virus scans, media and
cloud services, and flash crowd visitors [2,3]. Operating expenses

(OpEx) are affected by these fluctuations since utility companies
often charge separately for peak power. Demanding a large amount
of power during peak hours imposes additional cost penalties due
to spot pricing or time-of-day tariffs [4]. A large capital
expenditure (CapEx) is also required to enable the delivery of
peak power through the power infrastructure, even though the
probabilities of requiring peak power are often very low [5]. Fig. 1
shows the normalized power demand for 7 days for one of the
clusters in a Microsoft datacenter [6]. The figure shows a wide
power demand range including a few large peaks and significant
fluctuations in cluster-level power demand.

The economic penalty associated with fluctuating datacenter
power demand can be reduced through demand response. The
term “demand response” refers to any process that changes
consumer electricity demand based on electricity price [1].
Researcher have considered different information theoretic (IT)
[7–10] and cooling capacity knobs [11–13] to perform demand
response in datacenters. The IT knobs are used to (i) “throttle”
workload by reducing server speeds when electricity is expensive,
(ii) “shift” workload temporally from peaks to adjacent valleys, or
(iii) “transfer” the workload to other datacenters experiencing
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either smaller workloads or cheaper energy availability (or both).
Since these knobs involve tradeoffs between energy cost and
performance degradation, energy storage has come into play as an
additional knob. The idea is to store grid electricity when it is either
abundant or inexpensive (or both) and use the stored energy
during high workload or peak hours.

The literature already examines the problem of utilizing
existing storage in datacenter uninterruptible power supply
(UPS) systems or using a separate battery pack for demand
response [1,4,5,14]. The primary research focus of demand
response in datacenters with UPS is the minimization of total
cost of ownership (TCO) [15,16]. This is the sum of amortized
capital and operating costs over a time horizon [17]. Queuing
theory-based Lyapunov optimization techniques are also used to
find near-optimal solution to minimize monthly electricity bills
[1,18]. These optimization analyses typically focus on lead-acid
battery storage, although lithium-ion batteries are also considered
by some researchers. For demand response optimization, lithium-
ion batteries are generally modeled purely as charge integrators,
and battery lifetime is modeled using depth of discharge (DOD)
based lifetime charts and/or charge processed models [16,19–21].
These models are quite limited in their ability to capture the
fundamental physical phenomenon affecting lithium-ion battery
behavior. For example, an elementary charge integration model
does not capture internal battery diffusion dynamics, and therefore
fails in capturing the dynamic constraints imposed on battery
charging/discharging by diffusion. One goal in this article is to
extend the existing literature on datacenter demand response
through the use of a lithium-ion battery model that captures both
charge integration and voltage relaxation dynamics.

In addition to using a suitable battery model, a control scheme
is also necessary to optimally utilize batteries for demand
response. Optimal battery utilization in this case means using
the batteries to minimize the electricity cost as much as possible
with minimum battery degradation. Load leveling using batteries
will reduce the discounted monthly capital and operating cost
associated with datacenter electricity demand. However, deep
charge and discharge to shave large peaks might accelerate battery
aging. Therefore using battery charge capacity for load leveling
during demand response becomes a multi-objective optimization
problem, where minimizing battery health degradation and
electricity costs are the two competing objectives. To the best of
our knowledge, the extensive study of control strategies for model-
based, health-aware battery control during demand response
remains relatively unexplored in the datacenter power manage-
ment literature. Previous work by authors addresses this issue by
designing an optimal proportional controller for Li-ion batteries in
large-scale datacenters [22]. The work assumes the availability of
an optimally sized, power-efficient storage system (i.e., flywheels
or ultracapacitors) for emergency power plus a separate Lithium-
ion battery pack for demand response since such a hybrid storage
solution is often more cost-effective than a battery-only solution
[23]. In this previous work we (i) build a second-order model of a
Lithium-ion battery that captures both ohmic and diffusion

Nomenclature

An Sheet area of the negative electrode (m2)
Ccap Capital cost of power provisioning ($ W�1(12

years)�1)
Ce Concentration of lithium-ion in the electrolyte

(mol m�3)
Cenergy Unit cost of energy ($ (kWh)�1)
Cpeak Unit cost of peak power ($ kW�1 month�1)
Cr Charge capacity of the capacitor in the RC pair (F)
Cs,n,max Maximum concentration of lithium-ion in the

negative electrode (mol m�3)
Cs,n,surf Surface concentration of lithium-ion in the nega-

tive electrode (mol m�3)
Echarge Energy stored in the battery (Wh)
Edischarge Energy released from the battery (Wh)
F Faraday’s constant (C mol�1)
I Input current (A)
Jmain Volumetric current density of the main reaction

(A m�3)
Jside Volumetric current density of the side reaction

(A m�3)
Jtot Total intercalation current (A m�3)
Ln Thickness of the negative electrode (m)
Mp Molar mass of SEI layer material (kg mol�1)
Pbatt Battery input power (W)
Pbatt,dis Battery discharge power (W)
Pcap,des Desired power cap for “ideal” load leveling (W)
Pcap,max Peak power demanded from utilities with demand

response (W)
Pd Datacenter power demand (W)
Pd,avg Average datacenter power demand (W)
Pd,max Maximum datacenter power demand (W)
Pd,min Minimum datacenter power demand (W)
Q Cell charge capacity (C)
Qloss Capacity lost due to side reaction (Ah)
R Lumped resistance of the cell and the connector (V)
Rfilm Total film resistance (V m�2)
Rr Resistance of the resistor in the RC pair (m�2)
RSEI Initial resistance of SEI layer (V m�2)
Ru Universal gas constant (J mol�1)
SOCdes Desired SOC of the cell
T Cell temperature (K)
Un,ref Main reaction equilibrium potential of the negative

electrode (V)
Us,ref Side reaction equilibrium potential of (V)
V Terminal voltage (V)
Voc Open circuit voltage (V)
X1 Cell state of charge
X2 Charge in the capacitor in the RC pair (C)
Z Optimization objective
an Specific surface area of the negative electrode

(m�1)
io,n Main reaction exchange current density in the

negative electrode (A m�2)
io,s Side reaction exchange current density (A m�2)
kn Reaction rate constant at the negative electrode

(A m�2 (mol m�3)1.5)
xn,surf Surface state of charge of the negative electrode
Dj Potential difference between solid and electrolyte

(V)
a, b Proportional gain
aa, ac Apparent charge transfer coefficients for anode and

cathode

g Deadband width gain
d Integral gain
dfilm Time varying SEI film thickness (m)
hn Main reaction overpotential at the negative elec-

trode (V)
hs Side reaction overpotential (V)
kP Conductivity of the SEI film
rp Density of side reaction product (kg m�3)
t Time constant (s)
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