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a b s t r a c t

This paper presents a study of interval analysis for solving cold-standby system reliability optimization
problems with considering parameter uncertainty. Most works reported in existing literature have been
based on the assumption that the probabilistic properties and statistical parameters have a known func-
tional form, which is usually not the case. Very often the parameters are presented in form of an interval-
valued number or bounds/tolerance from the engineering design. In this paper, interval analysis is used to
incorporate this in the system optimization problems. A definition of interval order relation reflecting
decision makers’ preference is proposed for comparing interval numbers. A computational algorithm is
developed to evaluate the system reliability and expected mission cost, in which a discrete approxima-
tion approach and a technique of interval universal generating function are used. For illustration, an
application to sequencing optimization for heterogeneous cold-standby system is given; a modified
genetic algorithm is developed to solve the proposed optimization problem with interval-valued
objective. The results indicate that the interval analysis exhibits a good performance for dealing with
parameter uncertainty of cold-standby system optimization problems.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The development of industrial technology involves an increas-
ing amount of design of complex and interrelated systems. Relia-
bility is an important performance measure of industrial systems,
especially when it is of safety–critical concerns. Extensive research
has been carried out on system reliability optimization; survey
papers (Kuo & Prasad, 2000; Kuo & Wan, 2007; Tillman, Hwang,
& Kuo, 1977) have summarized many earlier studies on reliability
optimal problems.

In the existing literature of system reliability optimization,
most results are based on assumptions that the probabilistic prop-
erties or parameters of time-to-failure are deterministic. However,
due to observation difficulties, resource limits and system com-
plexity, uncertainties are usually unavoidable while modeling real
industrial systems. For many engineering problems, it is overly dif-
ficult or costly to collect sufficient data about the uncertainties,
especially at the very beginning of design processes. Stakeholders
and decision makers have to deal with a variety of uncertainty
issues when making decisions without sufficient information. In

fact, many parameters are specified as intervals of some kind in
engineering design.

Bayesian approach (Howson & Urbach, 2006) could be used to
study the uncertainties associated with the estimation of parame-
ters of a probability distribution (Pasanisi, Keller, & Parent, 2012;
Srivastava & Deb, 2013; Troffaes, Walter, & Kelly, 2014). The
unknown parameters are assumed to be random variables. With
the Bayesian approach, subjective judgments are required to esti-
mate the Bayesian random variables. The estimation of the Baye-
sian random variables can be improved when more data become
available. Before receiving more data, however, the Bayesian
approach remains a subjective representation of uncertainty. Fuzzy
theory is another commonly used method for analysing uncer-
tainty issues (Dotoli, Epicoco, Falagario, & Sciancalepore, 2015;
Hanss & Turrin, 2010; Wang & Watada, 2009). In the fuzzy
approach, the imprecise parameters are represented as fuzzy num-
bers. However, the fuzzy sets and their membership functions are
required to be known. It is a formidable task for decision makers to
specify the appropriate membership functions in advance.

In order to overcome the drawbacks of probabilistic methods
and fuzzy approaches, interval analysis first developed by Moore
(1966) has recently received some attention. The interval analysis
has been used to deal with problems of uncertainty in diverse
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fields, such as circuit analysis (Kolev, 1993), damage identification
(Wang, Yang, Wang, & Qiu, 2012), structure safety analysis
(Impollonia & Muscolino, 2011; Wang, Gao, Song, & Zhang, 2014;
Zhang, Dai, Beer, & Wang, 2013), electric power system (Pereira
& Da Costa, 2014), and so on. In these studies, interval variables
were used to quantitatively describe the uncertain parameters in
the face of limited information. Up to now, research on interval
uncertainty problems has concentrated mainly in the aforemen-
tioned fields, while the application of interval analysis to system
reliability optimization for complex industrial systems is relatively
new.

In the existing literature of system reliability optimization,
Feizollahi and Modarres (2012) suggested a robust deviation
framework to deal with uncertain component reliabilities in
constrained redundancy allocation problems; they addressed

uncertainty by assuming that the component reliabilities belong
to interval uncertainty sets. However, the interval numbers are
not incorporated directly. Gupta, Bhunia, and Roy (2009) and
Bhunia, Sahoo, and Roy (2010) dealt with optimization problems
for series systems; the reliability of each component was repre-
sented as an interval number. Sahoo, Bhunia, and Kapur (2012)
studied the constrained multi-objective reliability optimization
problem of systems with interval-valued component reliabilities.
However, these studies dealt specifically with the series or
series–parallel systems with active redundancy and given
interval-valued component reliability, or placed greater attention
on optimization algorithms.

In this paper, we present a study of interval analysis for cold-
standby system optimization problems considering uncertain
probabilistic parameters. Our study focuses on the evaluation
and optimization of system reliabilities and expected mission
costs. A discrete approximation approach based on Levitin et al.
(2013) and the interval universal generating function (IUGF) tech-
nique (Li, Chen, Yi, & Tao, 2011) are used in the evaluation proce-
dures for estimating the system reliability and the expected
mission cost. IUGF is a technique which extends the universal gen-
erating function (UGF) (Levitin, 2005) for the situations with
interval-valued parameters.

In solving the optimization problem with interval-valued objec-
tive, a set of interval values appear during the selection of the best
alternative, which leads to a question related to the comparison of
two arbitrary interval numbers. In this paper, we define a new
order relation for two arbitrary interval numbers considering dif-
ferent levels of decision maker’s preference. The level of decision
maker’s preference is measured by the ratio q0, where q0 ¼ 1
stands for neutrality; q0 > 1 stands for optimistic preference;
otherwise pessimistic.

For purposes of illustration, we propose the application of inter-
val analysis theory to the sequencing optimization problem for
heterogeneous cold-standby systems (Levitin et al., 2013a). In this

Nomenclature

Notations
½a� interval-valued number
a the lower bound of ½a�
�a the upper bound of ½a�
q0 level of decision maker’s preference
q ratio of two interval numbers in the inclusion type

relation
RjðtÞ;RðtÞ reliability of component j and system, respectively
ECðtÞ expected cost of system
N number of components in the system
Tj random variable representing the time-to-failure of

component j
Fjð�Þ cumulative distribution function of Tj

f jð�Þ probability density function of Tj

Vj start-up cost of component j
wj running cost of component j per time unit
Yj cumulative working time of first j components
sðjÞ index of component j in the predetermined order
s mission time of system
D duration of each time interval
m number of mission time intervals
½pjðiÞ� probability that component j fails in the time interval

Di;D iþ 1ð Þ½ �
tj;i i-th realization of Tj

ujðzÞ u-function representing discrete distribution of Tj

UjðzÞ u-function representing discrete distribution of Yj

Table 2
Best obtained components sequences for q0 ¼ 1a and different s.

Mission
time s

Optimal initiation
sequence

Expected mission
cost EC½ �

System
reliability ½R�

400 9, 7, 5, 8, 6, 2, 1, 10, 3, 4 [1551.5, 1641.6] [0.9677, 0.9839]
1, 2, 3, 4, 5, 6, 7, 8, 9, 10b [1859.3, 1924.2] [0.9682, 0.9838]

500 9, 7, 3, 5, 8, 6, 2, 1, 10, 4 [1963.8, 2075.5] [0.8451, 0.9035]
1, 2, 3, 4, 5, 6, 7, 8, 9, 10b [2220.1, 2275.1] [0.8440, 0.9045]

600 3, 9, 7, 5, 8, 10, 1, 6, 2, 4 [2342.0, 2424.1] [0.5955, 0.7269]
1, 2, 3, 4, 5, 6, 7, 8, 9, 10b [2517.7, 2540.4] [0.5955, 0.7262]

a When q0 ¼ 1, the proposed order relation are the same with the definition in
Bhunia and Samanta (2014).

b Comparative trials with initiation sequence of (1, 2, 3, 4, 5, 6, 7, 8, 9, 10).

Table 1
Component parameters for the optimization example.

Component g1;�
h i

g2;�
h i

V w

1 [57, 62] [1.00, 1.05] 100 3.0
2 [78, 82] [1.70, 1.90] 80 3.5
3 [65, 75] [1.20, 1.40] 210 1.2
4 [34, 36] [1.00, 1.10] 150 3.0
5 [130, 145] [2.30, 2.50] 220 2.0
6 [77, 82] [1.75, 1.85] 60 3.7
7 [78, 83] [1.15, 1.25] 120 1.8
8 [46, 54] [1.05, 1.20] 70 2.5
9 [72, 77] [1.15, 1.25] 100 1.5

10 [69, 71] [1.35, 1.65] 180 2.0

Table 3
Best obtained components sequences for s ¼ 500 and different q0.

q0 Optimal initiation
sequence

EC½ � ½R�

q0 6 0:3 9, 7, 5, 3, 8, 6, 2, 1, 10, 4 [1965.062,
2075.128]

[0.8451,
0.9035]

0:31 6 q0 6 2:76 9, 7, 3, 5, 8, 6, 2, 1, 10, 4 [1963.850,
2075.494]

q0 P 2:77 3, 9, 7, 5, 8, 6, 2, 1, 10, 4 [1963.831,
2075.545]
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