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a b s t r a c t

An improved particle swarm optimization (PSO) algorithm, called combined fitness function based par-
ticle swarm optimization algorithm is presented in this investigation. PSO algorithm originated from bird
flocking models and is effective in solving system identification problems. However in the identification
process, single measure like the squared error between the measured values and the modeled ones may
be not a sufficient criterion. The improved PSO algorithm adopts a combined fitness function to solve this
problem. Mean Square Error (MSE) and Grey Absolute Relational Grade (GARG) are employed as evalua-
tion measures, and entropy method is used to determine the relative weights of the two measures.
Numerical simulations and experiments are carried out to evaluate the performance of the improved
PSO. Consistent results demonstrate that combined fitness function based PSO algorithm is feasible
and efficient for system identification, and can achieve better performance over conventional PSO
algorithm.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

System identification is the field of approximating dynamic sys-
tem models using experimental data (Saleem, Taha, Tutunji, & AI-
Qaisia, 2015). Its basic idea is to compare the time dependent
responses of the actual system and identified model based on a
performance function giving a measure of how well the model
response fits the system response (Alfi & Fateh, 2010). Much effort
has been devoted to develop computational methods for system
identification problem over the years. Various techniques, such
as the recursive least square method (Ding, Wang, & Ding, 2015),
recursive prediction error approach (Wigren, 1993) and maximum
likelihood method (Hagenblad & Ljung, 2000), have been applied
for building accurate mathematical models of dynamic systems
successfully. Despite their success in system identification, they
have some fundamental problems, including their dependence on
unrealistic assumptions such as unimodal performance landscapes
and differentiability of the performance function, and trapping in
local minima (Alfi & Fateh, 2010). Recently evolutionary algorithms
(EAs) which impose less restriction have attracted researchers’
attention (Tang, Qiao, & Guan, 2010). EAs incorporate random
search and selection principle to achieve the global optimal solu-

tion (Panda, Pradhan, & Majhi, 2011). Several evolutionary compu-
tation techniques have been used in research areas such as
parameter estimation of linear and nonlinear dynamic processes
(de Azevedo Dantas, Maitelli, da Silva Linhares, & de Araujo,
2015). Particle swarm optimization (PSO) is a frequently used evo-
lutionary algorithm. It was firstly introduced by Kennedy and Eber-
hart (Eberhart & Kennedy, 1995; Kennedy & Eberhart, 1995), and
can be easily programmed with basic mathematical and logic oper-
ation (Tungadio, Numbi, Siti, & Jimoh, 2015). In many identification
applications, PSO has been successfully utilized, such as infinite
impulse response (IIR) system identification problem (Upadhyay,
Kar, Mandal, & Ghoshal, 2014), power system state estimation
(Tungadio et al., 2015), Wiener model identification (Tang et al.,
2010), and ship motion model identification (Chen, Song, & Chen,
2010).

Since the conception of the PSO, researchers have attempted
various ways to analyze and improve PSO algorithm. Wang and
Yeh (2014) proposed a modified PSO which introduces the idea
of sub-particles, a particular coding principle, and a modified oper-
ation procedure of particles to the update rules to regulate the
search processes for a particle swarm. By analyzing the dynamic
characteristics of PSO through a large number of experiments,
Zhang, Ma, Wei, and Liang (2014) constructed a relationship
between the dynamic process of PSO and the transition process
of a control system. To estimate the parameters of surge arrester
models, Nafar, Gharehpetian, and Niknam (2011) proposed a mod-
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ified particle swarm optimization which combines Ant Colony
Optimization and PSO algorithm. The suggested algorithm selects
optimum parameters for the arrester model by minimizing the
error among simulated peak residual voltage values given by the
manufacturer. Some other studies on improvements of PSO may
be found in (Gosciniak, 2015; Wu, Wu, Hu, & Wu, 2013; Yang,
Liu, & Yang, 2013; Yu, Ren, Du, & Shi, 2012). Galewski (2014)
pointed out that an important part of the PSO algorithm tuning
is a proper choice of fitness function. Therefore, in this investiga-
tion for further evaluation of the true level of fitness of a candidate
particle, we’ll combine two objective functions with entropy
method. The two functions evaluate the particle fitness from differ-
ent perspectives. Entropy method can ensure effective combina-
tion of the two functions. In the iterative process, if one has
trouble in determining which particle is better, the other one
would play a dominant role. In this way, the combined fitness
function could help PSO algorithm enhance global optimization
capability.

The remainder of this paper is organized as follows. In Section 2,
the idea of system identification with PSO algorithm is described.
Section 3 analyzes the problem of fitness function with the squared
error, and an improved PSO algorithm with combined fitness func-
tion is presented. In Section 4, combined fitness function based PSO
algorithm is validated with numerical simulations. Subsequently,
some experiments are carried out in Section 5 and the experimen-
tal findings are discussed. Finally, Section 6 concludes this paper.

2. Particle swarm optimization based system identification

2.1. Preliminaries of PSO

Particle swarm optimization algorithm is motivated by the
social behavior of organisms such as bird flocking and fish school-
ing (Tang et al., 2010). The PSO algorithm maintains a swarm of
particles representing candidate solutions for a given optimization
problem (Zhang et al., 2014). Particles start flying from the initial
positions through the search space with velocities. The velocity
of each particle is dynamically adjusted according to its own flying
experience and its companions’ flying experiences, and the perfor-
mance of each particle position is evaluated by a fitness function.
During the flight, the best previous experience for each particle is
stored in its memory and called the personal best (Pbest), the best
previous position among all particles is called the global best
(Gbest) (Li et al., 2014; Marion, Scorretti, Siauve, Raulet, &
Krähenbühl, 2008; Tungadio et al., 2015).

Let Xi ¼ ðxi1; xi2; . . . ; xiNÞ be the position of the i th particle in a N
dimensional search space. Similarly, the velocity Vi, the personal

best XPbest
i of each particle and the global best XGbest are represented

as Vi ¼ ðv i1;v i2; . . . ;v iNÞ; XPbest
i ¼ ðxPbesti1 ; xPbesti2 ; . . . ; xPbestiN Þ, and

XGbest ¼ ðxGbest1 ; xGbest2 ; . . . ; xGbestN Þ respectively. The particles are
manipulated according to the following equations (Al-Duwaish,
2011; Li et al., 2014)

Viðkþ 1Þ ¼ wViðkÞ þ c1r1 XPbest
i ðkÞ � XiðkÞ

� �
þ c2r2 XGbestðkÞ � XiðkÞ

� �
; ð1Þ

Xiðkþ 1Þ ¼ XiðkÞ þ Viðkþ 1Þ; ð2Þ
where acceleration coefficients c1; c2 are positive constant parame-
ters with the constraint c1 þ c2 6 4, they control the maximum step
size; r1; r2 are uniformly distributed random variables in the range
½0;1�;w is the inertia weight and controls the impact of the previous
velocity on its current one, it is suggested to be chosen from the
interval ½wmin;wmax� according to the following equation,

wðjÞ ¼ wmax � j
itermax

ðwmax �wminÞ; ð3Þ

where j is the current iteration generation, itermax is the maximum
iteration times, wmin and wmax are the minimum inertia weight and
maximum inertia weight, respectively.

2.2. Schematic for system identification

The main task of system identification is to search iteratively for
the parameters of the modeled system such that the input–output
relationship matches closely to that of the actual system
(Upadhyay et al., 2014). The basic block diagram for system iden-
tification is shown in Fig. 1. Most nonlinear systems are also recur-
sive in nature; thus, models for real world systems are better
represented as IIR systems (Luitel & Venayagamoorthy, 2010). An
IIR system can be represented by the following transfer function
(Luitel & Venayagamoorthy, 2010; Upadhyay et al., 2014):

HðzÞ ¼
Pm

k¼0 bkz�k

1þPn
k¼1 akz�k

; ð4Þ

where m and n are the numbers of numerator and denominator
coefficients, ak and bk are the pole and zero parameters which are
to be identified in the work.

System input xðkÞ is given to both the unknown system to be
identified and the modeled system. The output y0ðkÞ mixed with
a noise signal gives the final output yðkÞ to the actual system. On
the other hand, the modeled system has an output of ŷðkÞ for the
same input. The difference eðkÞ between the two output signals
is used by the identifier to adjust the parameters. Many techniques
for the identifier have been studied. For example, Sun and Liu
(2013) proposed a method named Maximum likelihood-adaptive
particle swarm optimization, and this method is demonstrated to
be better than recursive least-squares (RLS) algorithm both in
terms of convergence speed and accuracy. Ursem and Vadstrup
(2004) compared the performance of eight stochastic optimization
algorithms on identification of two induction motors. The eight
algorithms represent four main groups of algorithms: local search
(LS), evolution strategies (ESs), generational evolutionary algo-
rithms (EAs), and particle swarm optimizers (PSOs). From their
experiments, they drew one conclusion that population-based
stochastic optimization techniques (ESs, EAs, and PSOs) signifi-
cantly outperformed the local search algorithms. Therefore in this
study, we would employ PSO algorithm to finish the identification.
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Fig. 1. Block diagram for system identification.
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