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a b s t r a c t

A new heuristic procedure for the fixed charge network flow problem is proposed. The newmethod lever-
ages a probabilistic model to create an informed reformulation and relaxation of the FCNF problem. The
technique relies on probability estimates that an edge in a graph should be included in an optimal flow
solution. These probability estimates, derived from a statistical learning technique, are used to reformu-
late the problem as a linear program which can be solved efficiently. This method can be used as an inde-
pendent heuristic for the fixed charge network flow problem or as a primal heuristic. In rigorous testing,
the solution quality of the new technique is evaluated and compared to results obtained from a commer-
cial solver software. Testing demonstrates that the novel prediction-based relaxation outperforms linear
programming relaxation in solution quality and that as a primal heuristic the method significantly
improves the solutions found for large problem instances within a given time limit.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The fixed charge network flow problem (FCNF) can be described
on a network G ¼ ðN;AÞ, where N and A are the sets of nodes and
edges, respectively. Each node i 2 N has a supply/demand com-
modity requirement Ri (Ri > 0 if node i is a supply node; Ri < 0 if
node i is a demand node; otherwise, Ri ¼ 0). Each edge ði; jÞ 2 A
has costs associated with commodity flow. Let cij and f ij denote
the variable and fixed costs, respectively. An artificial capacity
value, Mij, can be used in the problem formulation to ensure that
the fixed cost f ij is incurred whenever there is a positive flow on
ði; jÞ 2 A. There are two types of variables in the FCNF, edge ði; jÞ
flow and usage, denoted as xij and yij, respectively. The latter is a
binary variable representing the decision to use ði; jÞ 2 A for routing
commodities and incurs the fixed cost f ij. The formulation is pro-
vided in Eqs. (1)–(4).

min
X
ði;jÞ2A

ðcijxij þ f ijyijÞ ð1Þ

s:t:
X
ði;jÞ2A

xij �
X
ðj;iÞ2A

xji ¼ Ri 8i 2 N ð2Þ

0 6 xij 6 Mijyij 8ði; jÞ 2 A ð3Þ
yij 2 f0;1 8ði; jÞ 2 A ð4Þ

The objective function in (1) is the sum of variable and fixed costs
incurred for the solution. Constraint (2) ensures that the inflow
and outflow satisfy the supply or demand requirements at node
i 2 N. Constraint (3) creates a logical relationship between xij and
yij. Constraint (4) defines yij as binary, which makes the problem a
mixed binary programming problem.

Many practical problems can be modeled as a FCNF problem or
variation thereof, such as transportation problems (El-Sherbiny &
Alhamali, 2013), the lot sizing problem (Steinberg & Napier,
1980), the facility location problem (Melo, Nickel, & Saldanha-da
Gama, 2009; Nozick, 2001), network design (Costa, 2005;
Ghamlouche, Crainic, & Gendreau, 2003; Lederer &
Nambimadom, 1998) and others (Armacost, Barnhart, & Ware,
2002; Jarvis, Rardin, Unger, Moore, & Schimpeler, 1978). The FCNF
problem is an NP-hard problem and over the decades, a significant
quantity of research has been directed towards providing solution
approaches to the FCNF. Many techniques utilize variations of the
branch-and-bound (B&B) algorithm to search for the exact solution
of the FCNF (Barr, Glover, & Klingman, 1981; Cabot & Erenguc,
1984; Driebeek, 1966; Hewitt, Nemhauser, & Savelsbergh, 2010;
Kennington & Unger, 1976; Ortega & Wolsey, 2003; Palekar,
Karwan, & Zionts, 1990). The B&B algorithm may be inefficient
due to the lack of the tight bounds during the linear programming
(LP) relaxation.

State-of-the-art MIP solvers combine a variety of cutting plane
strategies, heuristic techniques with B&B to search for the exact
optimal solution. Modern MIP solvers use preprocessing methods
to reduce the search space and significantly accelerate the solving
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processes (Bixby, Fenelon, Gu, Rothberg, & Wunderling, 2000).
More details of the preprocessing techniques can be found in
Nemhauser and Wolsey (1988), Wolsey (1998), Fügenschuh and
Martin (2005), Mahajan (2010). Additionally, due to the impracti-
cal computational effort to obtain exact solutions for large
instances, heuristic approaches to obtain near-optimal solutions
have generated considerable research interest (Adlakha &
Kowalski, 2010; Antony Arokia Durai Raj & Rajendran, 2012;
Balinski, 1961; Kim & Pardalos, 1999; Molla-Alizadeh-Zavardehi,
Hajiaghaei-Keshteli, & Tavakkoli-Moghaddam, 2011; Monteiro,
Fontes, & Fontes, 2011; Sun, Aronson, McKeown, & Drinka, 1998).

In this study, a novel prediction-based relaxation (PBR) method is
proposed. PBR may be used as an FCNF heuristic solution technique
or as a primal heuristic to potentially improve on exact search
solution quality and time. The new method leverages a probabilis-
tic model to create an informed reformulation and relaxation of the
FCNF problem. For the FCNF problem, a binary probabilistic classi-
fication model is required. Approaches to develop such models are
common in the field of statistical learning and include logistic
regression, linear discriminant analysis, partial least squares dis-
criminant analysis, and random forests among others. The present
work demonstrates the utility of PBR by implementing one such
model, a logistic regression developed by Nicholson and Zhang
(2016).

The primary contribution of this work is to introduce and eval-
uate a new paradigm for approaching the classical FCNF problem.
In particular, elements from statistical learning are combined with
more traditional solution techniques from Operations Research.
Section 2 provides a brief review of the predictive model from
Nicholson and Zhang (2016). Subsequently, the necessary mathe-
matical transformations to leverage the predictive model results
are described and the formal PBR mathematical model is pre-
sented. Section 3 describes the experiments to evaluate PBR as
an independent heuristic and explores the strategy to combine
PBR and the B&B algorithm as an exact solution approach. The
work is concluded in Section 4.

2. Prediction-based relaxation

2.1. Motivation

The prediction-based relaxation approach is dependent on an
underlying statistical model to produce probabilities for positive
edge flow in an FCNF instance. A variety of predictive modeling
methods to produce such probabilities are possible. One such pos-
sibility is the statistical learning model developed in Nicholson and
Zhang (2016). Their model is based on the 28 variables described in
Table 1. The authors classify these variables as being associated
with four types of network characteristics: overall network level
(e.g., total number of nodes), edge specific attributes (e.g., variable
cost), linear relaxation based variables (e.g., edge flow in an relaxed
problem), and lastly, variables related to the nodes incident to an
edge (e.g., node degree). While many network and network compo-
nent features are possible, their guiding principle was to find pre-
dictive variables that are relatively straightforward and easy to
compute since their goal was to introduce and explore a new para-
digm for understanding and exploiting FCNF problems. Through
the use of initial trial and error tests and secondly, the use of
Akaike information criterion informed stepwise regression, this
small subset was selected. These features are used as predictors
in a logistic regression model to predict components of the FCNF
optimal solution. The associated regression coefficients are
provided in Table 1. In particular, the model produces a likelihood
of edge usage with a logistic regression model. The response
variable is a binary variable, indicating whether or not the edge

has positive flow in the optimal solution. Let Yij denote the
response variable,

Yij ¼
1; edge ði; jÞ is used in the FCNF optimal solution
0; otherwise:

�

Logistic regression is supervised learning technique to develop a
probabilistic classifier. The resulting model, based on the input
data, assigns a probability that the response variable attains a given
value. PBR requires a probabilistic classifier, albeit it is in no way
limited to logistic regression derivedmodels. Ideally, a probabilistic
model for PBR is both highly accurate and efficient to implement.
The logistic regression model conceived and studied in Nicholson
and Zhang (2016) meets both of these criteria. Ideally, if edges used
in an optimal FCNF solution could be predicted perfectly, then the
B&B search would be altogether eliminated. Perfect predictions
however are not a reasonable aspiration in general. If, however, a
predictive model were highly accurate, then at least the search
space could potentially be reduced or the search otherwise
informed. The goal of PBR is to exploit such probability models.

2.2. Mathematical model

In this work, the probability from the final logistic regression
model is used to develop a novel heuristic for the FCNF. Let
pij � PðYij ¼ 1Þ denote the probability estimate that edge ði; jÞ 2 A
is used in the FCNF problem. The value for pij is derived from any
appropriate predictive model. Let c0ij ¼ � ln pij where
0 < pij 6 1 8ði; jÞ 2 A. The PBR cost function is denoted by z0PBR
and defined as

z0PBR ¼
X
ði;jÞ2A

c0ijxij ¼
X
ði;jÞ2A

� xij ln pij ¼ � ln
Y
ði;jÞ2A

p
xij
ij

Table 1
Logistic regression model from Nicholson and Zhang (2016).

Predictor description Predictor
notation

Regression
coefficient

(Intercept) 8.32
Number of nodes n �0.048
Number of edges m �0.0055
Variable cost on ði; jÞ cij �0.0879
Fixed cost on ði; jÞ f ij �0.0002
Fixed to variable cost ratio cij <0.0001
Tail node type: transhipment ti ¼ 0 �0.543
Tail node type: supply ti ¼ 1 2.17
Head node type: transhipment tj ¼ 0 �3.01
Head node type: supply tj ¼ 1 �2.38
Outdegree of tail node �di� �2.59
Indegree of tail node �d�i �2.69
Outdegree of head node �dj� �2.3

LP relaxation usage �lBij 1.4

LP relaxation flow �lij 5.76

Tail node requirements �ri 0.967
Tail adjacent in-supply �rSi� 0.765

Tail adjacent in-demand �rDi� 0.878

Tail adjacent out-supply �rS�i �0.215

Tail adjacent out-demand �rD�i 0.464

Head adjacent in-supply �rSj� �0.797

Head adjacent in-demand �rDj� �0.917

Head adjacent out-supply �rS�j �0.122

Demand head nodes adjacent to tail �dDi� �1.3

Supply tail nodes adjacent to tail �dS�i 1.84

Demand tail nodes adjacent to tail �dD�i 4.57

Demand head nodes adjacent to head �dDj� �1.58

Supply tail nodes adjacent to head �dS�j 3.19

Demand tail nodes adjacent to head �dD�j 1.26
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