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a b s t r a c t

This paper attempts to explore the performance measures and optimization analysis of machine repairing
systems with standby switching failure. The time between failures and time-to-repair of failed machines
are assumed to be exponential and general distributions, respectively. The standby is switched over to
the operating mode when an operating machine fails, and the switch is subject to failure with probability
q. A recursive method based on the supplementary variable technique is used to derive the steady-state
probabilities of failed machines in the system. We then develop various performance measures of the sys-
tem and construct the expected cost function per unit time. The probabilistic global search Lausanne
method is employed to determine the optimal number of standbys and the optimal repair rate, wherein
the expected cost per unit time is minimized. Finally, some numerical examples are provided for illustra-
tive purposes.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The machine repairing system can be applied to a variety of real
situations, such as computer network, telecommunications, coal
shipment, aircraft maintenance, and many others (see Haque &
Armstrong, 2007). Gupta and Srinivasa Rao (1994, 1996) used the
supplementary variable technique to calculate the stationary prob-
ability distribution for the M/G/1 machine repairing system with
no spares and cold standbys. Using the same technique, Srinivasa
Rao and Gupta (2000) obtained the probability distribution of the
number of down machines in the M/G/1 machine interference sys-
tem with cold-, warm- and hot-standbys. Wang and Kuo (1997)
presented the profit analysis of the M/EK/1 machine repair problem
with non-reliable service station. Wang, Ke, and Ke (2007) consid-
ered the M/M/R machine repair problem with balking, reneging
and standby switching failure. Ke and Lin (2010) employed the
maximum entropy method to compute the stationary probability
distribution of the number of down machines approximately for
the M/G/1 machine repair problem. A multi-server machine repair
problem with warm standbys under synchronous multiple vaca-
tion policy was investigated by Ke and Wu (2012). Wang, Liou,
and Lin (2013) studied the issue of the M/M/R machine repair
problem with imperfect coverage and service pressure condition.
Liou, Wang, and Liou (2013) considered the controllable M/M/2

machine repair problem under the triadic (0, Q, N, M) policy.
Wang, Liou, and Wang (2014) investigated a multiple-vacation
M/M/1 standby machine repair problem with an unreliable repair-
man. Recently, Wang, Su, and Yang (2014) utilized a recursive
method based on the supplementary variable technique to develop
steady-state analytical solutions in the M/G/1 machine repair
problem with multiple imperfect coverage.

In the past, many studies on machine repairing systems with
standbys assumed that it is perfect to switch over the standby to
operating one. However, in real-life situations, the possibility of
failure to switch a standby to an operating one exists. In this paper,
we utilize the supplementary variable technique to analyze an M/
G/1 machine repairing system with switching failure. Huang, Lin,
and Ke (2006) examined a parametric nonlinear programming
approach for a repairable system with switching failure and fuzzy
parameters. Wang, Dong, and Ke (2006) performed a comparative
analysis of the reliability and availability of four systems with
warm standby units, reboot delay and standby switching failures.
Ke, Lee, and Ke (2008) studied the reliability and sensitivity of a
system with standby switching failure. Wang and Chen (2009)
compared the availability of three different systems with reboot
delay and standby switching failures. Liu, Ke, Hsu, and Hsu
(2011) applied the bootstrap method to investigate the statistical
inferences of a repairable system with standby imperfect switch-
ing. Hsu, Ke, and Liu (2011) studied the statistical inferences of
an availability system with reboot delays, standby switching fail-
ures and unreliable service station. An M/M/R machine repair
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problem with a switching failure probability, reboot delay and
repair pressure coefficient has been examined and can be seen in
the recent work of Hsu, Ke, Liu, and Wu (2014).

Existing works on the machine repairing system with switching
failure mainly focus on the specific repair time distribution (e.g.,
exponential distribution). However, from a practical viewpoint,
the repair time can be an arbitrary random variable. This motivates
us to investigate a machine repairing system with switching failure
and distribution-free repair times. The contributions of this
research are outlined as follows: (1) we examine the machine
repairing system with standby failure, in which the repair time fol-
lows general distribution; (2) we propose a solution procedure to
compute the steady-state probability distribution of the number
of failed machines in the system; and (3) the cost optimization
problem is formulated to find the optimal number of standbys,
and optimal repair rate to minimize the expected cost per unit
time.

2. Model description and notations

We consider a machine repairing system with N ¼ M þW
homogeneous machines, where M machines are operating and
W machines are spare machines (standbys). When an operating
machine breaks down, it is replaced by an available standby. Sup-
pose that the switch is subject to failure with probability q during
the switching from the standby state to the operating state. The
time-to-failure of the operating machine is assumed to be expo-
nentially distributed with parameter k. Whenever one of the
operating machines fails, it is immediately replaced by a standby,
as long as one is available. The time between failures of standby
machines obeys an exponential distribution with parameter a.
Whenever an operating machine or a standby fails, it is immedi-
ately sent to a repair and is repaired in order of breakdown. The
repair times of the failed machines are independent and identi-
cally distributed (i.i.d.) random variables, having a general distri-
bution BðvÞðv P 0Þ, a probability density function bðvÞðv P 0Þ
and mean repair time b. The repairman can repair only one failed
machine at a time. When a failed machine is repaired and the
system is short (the number of active machines in the system is
less than M), it is sent back as an operating machine, and the fail-
ure rate changes from a to k. Otherwise, it acts as a standby
machine with failure rate a. Table 1 lists the notations used in
this paper.

Such a system has potential applications in a network switch. A
Digital Subscriber Line Access Multiplexer (DSLAM) is network
switch equipment which collects multiple customer digital sub-
scriber data and transfers it to a high-speed digital communica-
tions channel. We define two kinds of subscriber line cards: one
is the M primary line card and the other is the W standby line card.
If the primary line card fails, the DSLAM’s redundancy feature
allows the standby line card to successfully take over system oper-
ations with probability 1� q. The switchover from a standby line
card to a primary line card may fail due to hardware or software
issues with probability q. Both of the primary line cards and
standby line cards can be considered to be repairable. The primary
line cards fail independently of the state of the standby line cards
and vice versa. Let the time between failures of the primary line
cards and the time between failures of the standby line cards be
exponentially distributed with parameters k and a, respectively.
Whenever a primary line card or a standby line card fails, it is
immediately repaired in the order of breakdown with a time-to-
repair which is generally distributed. Once a line card is repaired,
its function is as good as new. Thus, this system can be modeled
as an M/G/1 machine repairing system with standby switching
failure.

3. Steady-state results

3.1. Steady-state probability

We use the supplementary variable V � remaining repair time
for the failed machines under repair. The state of the system at
time t is given by:

NðtÞ � number of failed machines in the system, and
VðtÞ � remaining repair time for the failed machines under
repair.

Let us define:

Piðv ; tÞ ¼ PfNðtÞ ¼ i; v < VðtÞ 6 v þ dvg; v P 0;
i ¼ 0;1;2; . . . ;N

PiðtÞ ¼
Z 1

0
Piðv ; tÞdv ; i ¼ 0;1;2; . . . ;N

Using the state-transition-rate diagram shown in Fig. 1, we obtain
the following differential equations

d
dt
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Table 1
Notations used in this paper.

Notation Description

M Number of operating machines
W Number of standbys
N Number of machines in the system, where N ¼ M þW
k Mean failure rate of an operating machine
a Mean failure rate of a standby
BðvÞ Distribution function of the repair time
bðvÞ Probability density function of the repair time
b Mean repair time
q Probability of switching failure
NðtÞ Number of failed machines in the system at time t
VðtÞ Remaining repair time for the failed machines under repair at time t
PiðtÞ Probability that there are i failed machines in the system at time t,

where i ¼ 0;1;2; . . . ;N
s Laplace transform variable
PiðsÞ Laplace-Stieltjes transform (LST) of PiðtÞ
BðsÞ LST of the repair time
LS Average number of failed machines in the system
E½W � Average number of standbys in the system
E½I� Average number of idle repairman in the system
E½B� Average number of busy repairman in the system
S:R: Average switching failure rate
M:A: Machine availability, the fraction of the total time that the

machines are working
O:U: Operative utilization (the fraction of busy repairman)
Av System availability (the steady-state probability that at least M

machines are in operation)
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