Computers & Industrial Engineering 98 (2016) 1-10

journal homepage: www.elsevier.com/locate/caie

Contents lists available at ScienceDirect

Computers & Industrial Engineering

-

E tors &
industrial engineering

Breakout dynasearch for the single-machine total weighted tardiness

problem

@ CrossMark

Junwen Ding?, Zhipeng Lii ***, T.C.E. Cheng”, Liping Xu*®

4 SMART, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
b Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China

ARTICLE INFO ABSTRACT

Article history:

Received 29 September 2015

Received in revised form 8 March 2016
Accepted 28 April 2016

Available online 7 May 2016

Keywords:

Heuristic

Single-machine scheduling
Breakout local search
Adaptive perturbation strategy
Dynasearch

We present a breakout dynasearch algorithm (BDS) for solving the single-machine total weighted tardi-
ness problem, in which a set of independent jobs with distinct processing times, weights, and due dates
are to be scheduled on a single machine to minimize the sum of the weighted tardiness of all the jobs.
BDS explores the search space by combining the dynasearch procedure and the adaptive perturbation
strategy. Experimental results show that BDS virtually solves all the standard benchmark problem
instances with 40, 50, and 100 jobs from the literature within 0.1 s. For 500 larger instances with 150,
200, 250, and 300 jobs, BDS obtains all the upper bounds with the same objective function of the optimal
solutions within an average of 252 s, demonstrating the efficacy of BDS in terms of both solution quality
and computational efficiency. We also analyze some key features of BDS to identify its success factors.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the single-machine total weighted tardiness prob-
lem (SMTWT), denoted as 1| >~ w;T;. In this problem, a set of inde-
pendent jobs (N={1,...,n}) is to be processed without
interruption on a single machine that can process only one job at
a time. Each job i € N has an integer processing time p;, a due date
d;, and a positive weight w;. All the jobs are available for processing
at time zero. Given a job sequence, the completion time C; and tar-
diness T; = max{0, C; — d;} can be calculated for each jobi e N.Ifa
job i is finished after its due date, then a weighted tardiness pen-
alty w;T; will incur. The objective is to find a job sequence S to min-
imize the sum of the weighted tardiness penalties: f(S) = >, wiT;.
SMTWT is an NP-hard problem (Lenstra, Kan, & Brucker, 1977),
which includes many machine scheduling problems in the
parallel-machines (Cheng, Hsu, & Yang, 2011), flow shops
(Levner, Kats, de Pablo, & Cheng, 2010; Ng, Wang, Cheng, & Lam,
2011), job shop settings (Ji, Chen, Ge, & Cheng, 2014; Valente &
Schaller, 2012).

Several exact algorithms have been proposed for solving
SMTWT (Abdul-Razaq, Potts, & Van Wassenhove, 1990; Emmons,
1969; Ibaraki, 1988; Ibaraki & Nakamura, 1994; Kan, Lageweg, &

* Corresponding author at: SMART, School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, PR China.
E-mail addresses: dingjunwen@hust.edu.cn (J. Ding), zhipeng.lui@gmail.com
(Z. L), Igtcheng@polyu.edu.hk (T.C.E. Cheng), xIphust@163.com (L. Xu).

http://dx.doi.org/10.1016/j.cie.2016.04.022
0360-8352/© 2016 Elsevier Ltd. All rights reserved.

Lenstra, 1975; Keha, Khowala, & Fowler, 2009; Potts & Van
Wassenhove, 1985). Particularly, Pan and Shi (2007) provide an
improved branch-and-bound algorithm that solves all the open
OR-library benchmark instances with 100 jobs. Tanaka, Fujikuma,
and Araki (2009) propose an exact algorithm based on the Succes-
sive Sublimation Dynamic Programming (SSDP) method, which can
solve instances with 100 and 300 jobs within 40s and 1 h on a
2.4 GHz Pentium IV computer, respectively. However, the algo-
rithm needs lots of memory to store the dynamic programming
states. For example, it requires 384 MB RAM to handle 300-job
instances.

For large instances, exact methods are computationally ineffi-
cient to be applicable. Therefore, variants of metaheuristic algo-
rithms have been extensively used to tackle SMTWT (Cheng, Ng,
Yuan, & Liu, 2005; Congram, Potts, & van De Velde, 2002;
Crauwels, Potts, & Van Wassenhove, 1998; den Besten, Stiitzle, &
Dorigo, 2001; Sen, Sulek, & Dileepan, 2003; Volgenant &
Teerhuis, 1999). Many other advanced metaheuristics have also
been proposed for tackling SMTWT, such as simulated annealing
(SA) (Potts & Van Wassenhove, 1991), tabu search (TS) (Bilge,
Kurtulan, & Kirag, 2007; Bozejko, Grabowski, & Wodecki, 2006),
ant colony optimization (ACO) (Anghinolfi & Paolucci, 2008; den
Besten, Stiitzle, & Dorigo, 2000; Holthaus & Rajendran, 2004),
population-based variable neighbourhood search (PVNS) (Wang
& Tang, 2009), particle swam optimization combined with differ-
ential evolution algorithms (PSO) (Tasgetiren, Liang, Sevkli, &
Gencyilmaz, 2006), genetic algorithm (GA) (Avci, Akturk, &

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2016.04.022&domain=pdf
http://dx.doi.org/10.1016/j.cie.2016.04.022
mailto:dingjunwen@hust.edu.cn
mailto:zhipeng.lui@gmail.com
mailto:lgtcheng@polyu.edu.hk
mailto:xlphust@163.com
http://dx.doi.org/10.1016/j.cie.2016.04.022
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie

2 J. Ding et al. / Computers & Industrial Engineering 98 (2016) 1-10

Storer, 2003), memetic algorithm (Huang, Chang, Lim, & Zhang,
2012), hybrid approach (Wang & Tang, 2008), and variable neigh-
bourhood descent (VND) (Geiger, 2010b, 2010a). Notably, Grosso,
Della Croce, and Tadei (2004) improve the algorithms by adopting
generalized pairwise interchange operators. Ergun and Orlin
(2006) present a fast neighbourhood search, which improves the
time complexity of searching the swap neighbourhood from
0(n?) to O(n?).

We present for the first time a breakout dynasearch algorithm
(BDS) based on the merits of the breakout local search (BLS) and
dynasearch to tackle SMTWT. BLS has recently been shown to be
effective in solving several combinatorial optimization problems,
such as the sum colouring (Benlic & Hao, 2012), maximum clique
(Benlic & Hao, 2013a), max-cut (Benlic & Hao, 2013b), quadratic
assignment (Benlic & Hao, 2013c), vertex separator (Benlic &
Hao, 2013d), and Steiner tree problems (Fu & Hao, 2014). As an
improved version of BLS, BDS incorporates the dynasearch pro-
posed by Congram et al. (2002) as a local search procedure to
improve the search intensification. Besides, by introducing an
adaptive perturbation mechanism, BDS can reach a suitable degree
of diversification by dynamically determining the number of per-
turbation moves (i.e., the jump magnitude) and by adaptively
choosing between several types of perturbation moves of different
intensities. This is achieved by analyzing the history information
stored in a dedicated memory structure.

Computational results show that BDS can easily obtain the
upper bounds with the same objective function of the optimal
solutions for all the standard benchmark problem instances with
40, 50, and 100 jobs in the literature in less than 0.1 s with a hit
ratio of 100%. Applied to the instances with 150, 200, 250, and
300 jobs, BDS is competitive with the exact approach in the litera-
ture in that it can obtain the upper bounds with the same objective
function of the optimal solutions for all of them within an average
of 252s.

We organize the remaining part of this paper as follows: Sec-
tion 2 gives the details of the proposed BDS, including the main
scheme of BDS, the initialization of solutions, the dynasearch pro-
cedure, and the adaptive diversification mechanism. Section 3
reports the computational results of evaluating the performance
of BDS against state-of-the-art solution methods for SMTWT in
the literature. Section 4 analyzes the key features of BDS to identify
its success factors, while Section 5 concludes the paper and sug-
gests future research topics.

2. Breakout dynasearch algorithm
2.1. Main scheme

Breakout dynasearch is a general stochastic local search method
that follows the basic scheme of iterated local search (ILS)
(Lourenco, Martin, & Stiitzle, 2003). The basic idea of BDS is to
use a dynasearch procedure to intensify the search in a given
search region, and to apply effective perturbations to move to a
new search region once a local optimum is obtained. The perturba-
tion phase is the essential part of BDS, which uses an adaptive and
multi-type perturbation mechanism to introduce a suitable degree
of diversification at a certain stage of the search process for the
optimal solutions.

The general architecture of BDS is described in Algorithm 1. It is
composed of the following five procedures: GeneratelnitialSolution
generates an initial solution for the search; Dynasearch is the des-
cent local search procedure that searches a defined neighbourhood
for a solution until a local optimum is obtained; Deter-
mineJumpMagnitude determines the number L of perturbation
moves (also called “jump magnitude”); DeterminePerturbationType

determines the type T of perturbation moves between two or
several alternatives of different perturbation type. Once the
number L and the type T of perturbation moves are selected,
BDS invokes the perturbation procedure to apply L moves
of type T to the best solution found so far. This perturbed
solution becomes the new starting point of the search whereby a
new round of Dynasearch is performed to optimize the
objective function. The relevant information recorded in the
search history is used to influence the decisions made in
DetermineJumpMagnitude, DeterminePerturbationType, and Pertur-
bation procedures. In the following subsections we present the
main components of BDS in detail.

Algorithm 1. Pseudo-code of BDS for SMTWT

1: Input: Processing time, weight and due time of each job in
an unscheduled job sequence

2: Output: The best scheduled sequence S* found so far

3: S* « GeneratelnitialSolution()

4:L — Ly

5: while stopping condition not reached do

6: S — Dynasearch(S")

7: L « DetermineJumpMagnitude(L,S', history)
8: T « DeterminePerturbationType(S', history)
9: if f(§) < f(S*) then

10: S =9

11: end if

12: S* « Perturbation(L,T,S", history)
13: end while

2.2. Initial solution

In order to improve search diversification, a greedy and ran-
domized construction strategy is used to generate different initial
solutions of relatively good quality for multiple runs of the proce-
dure. Specifically, each job is inserted one by one in non-decreasing
order of d;/w; into the partial sequence S, (empty at the beginning)
in the position that gives the least increased objective value with
probability « (if it has more than one positions, select one ran-
domly). Otherwise, the job is inserted into a randomly selected
position.

2.3. Dynasearch procedure

Dynasearch (DS) is a neighbourhood search algorithm whose
main feature is the ability of searching exponential-sized neigh-
bourhoods in polynomial time by exploiting the problem structure.
In essence, DS applies a series of independent moves produced by
dynamic programming, which can optimize the objective function
value as far as possible, while most traditional neighbourhood
search procedures only apply one best move in each iteration.

Swap, forward insert, and backward insert are the three neigh-
bourhood structures that are commonly used in metaheuristic
algorithms for scheduling problems. Computational experiments
suggest that, for SMTWT, the swap neighbourhood is superior to
the other two neighbourhoods in terms of solution quality when
used in heuristic algorithms (Geiger, 2010b). Therefore, we only
use the swap neighbourhood in the dynasearch procedure. To facil-
itate explanation, we adopt the following notations in BDS.

S=(s(1),...,s(n)): a sequence that gives the processing order of
all the jobs.

swap(i,j): a single move that swaps job i and job j (i,j € N).

Download English Version:

https://daneshyari.com/en/article/1133307

Download Persian Version:

https://daneshyari.com/article/1133307

Daneshyari.com

https://daneshyari.com/en/article/1133307
https://daneshyari.com/article/1133307
https://daneshyari.com

