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a b s t r a c t

The applications of attribute data cover a wide variety of manufacturing and service processes. Moreover,
the need for attribute control charts suitable for multivariate and autocorrelated processes has been well
recognized. However, there is a scarcity of methods for addressing the autocorrelation among the multi-
variate attribute data. This paper focuses on autocorrelated bivariate binomial data and proposes a con-
trol chart based on the bivariate binomial autoregressive model by integrating a log-likelihood-ratio
statistic into Exponentially Weighted Moving Average (EWMA). The performance of the proposed chart
in detecting sustained shifts in parameters is evaluated by the Average Number of Samples to Signal
(ANSS). The simulation results show that the proposed chart is generally more robust and sensitive to
small and moderate shifts compared with the existing charts. In addition, a real example from laser
gyroscope manufacturing is used to illustrate the implementation of the proposed approach.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Statistical Process Control (SPC) has been demonstrated to be an
important tool for monitoring process or product quality. In mod-
ern manufacturing and service processes, it is more common to
monitor two or more correlated quality characteristics simultane-
ously rather than a single one. In such situations, multivariate con-
trol charts must be considered. In general, there are two types of
control charts in multivariate SPC – those used for measurement
data and those used for attributes. In the past decades, some mul-
tivariate measurement control charts have been proposed, such as
T2 control charts (Hotelling, 1947; Khoo, Wu, Castagliola, & Lee,
2013; Sparks, 2015), Multivariate Cumulative Sum (MCUSUM)
control charts (Crosier, 1988; Dai, Luo, Li, & Wang, 2011;
Pignatiello & Runger, 1990; Woodall & Ncube, 1985), Multivariate
Exponentially Weighted Moving Average (MEWMA) control charts
(Lowry, Woodall, Champ, & Rigdon, 1992; Shen, Tsung, & Zou,
2014; Zou & Tsung, 2008) and multivariate control charts based
on neural networks (Hwarng, 2008; Cheng & Cheng, 2011). How-
ever, fewer multivariate control charts dealing with attribute data
have been developed, despite the fact that the multivariate attri-
butes are common in many applications.

The quality characteristics of the multivariate attribute pro-
cesses could be modeled by either multivariate Poisson distribu-
tion or multivariate binomial/multinomial distribution (Chiu &
Kuo, 2008). This study focuses on the binomial approach and the

Poisson could be subject of future research. Lu (1998) proposed a
Shewhart-type multivariate np control chart (MNP control chart)
to monitor multivariate binomial observations. They defined a
new statistic, which is the weighted sum of nonconforming counts
of each quality characteristic, while considering the correlations
between the attributes. Chiu and Kuo (2010) presented a new con-
trol chart to monitor a bivariate binomial process. They simultane-
ously took the false alarms (type I errors) and the correlation
between attributes into account. Based on log-linear models, Li,
Tsung, and Zou (2014) proposed a Phase II control chart, which
can be applied to the unified framework of multivariate binomial
and multivariate multinomial processes. A recent review on the
multinomial and multi-attribute control charts has been given by
Topalidou and Psarakis (2009).

These classical control charts focus on the cases where multi-
variate binomial observations are time-independent. However,
because of the fast sampling schemes relative to the process
dynamics and the natural behavior of many real-life applications,
the successive observations are often autocorrelated (Soleimani,
Noorossana, & Amiri, 2009). One real example is the manufacturing
of the laser gyroscope which can be found in Section 2. It is well
known that autocorrelation might affect the performance of a con-
trol chart if the chart is designed for processes with independent
observations (Hwarng &Wang, 2010). For this reason, effective sta-
tistical methodologies are required. Based on the two-state Markov
chain model, some control charts were proposed for autocorrelated
univariate binomial or Bernoulli data (e.g., Bhat & Lal, 1990; Lai,
Xie, & Govindaraju, 2000; Mousavi & Reynolds, 2009; Shepherd,
Champ, Rigdon, & Fuller, 2007; Wang & Reynolds, 2014; Weiß,

http://dx.doi.org/10.1016/j.cie.2016.06.001
0360-8352/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: syf8110@gmail.com (Y. Shang).

Computers & Industrial Engineering 98 (2016) 350–359

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2016.06.001&domain=pdf
http://dx.doi.org/10.1016/j.cie.2016.06.001
mailto:syf8110@gmail.com
http://dx.doi.org/10.1016/j.cie.2016.06.001
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie


2009a). Alternatively, Weiß (2009b) investigated the binomial AR
(1) model for correlated processes with binomial marginals and
proposed some control schemes for such processes. In contrast to
the numerous univariate approaches to autocorrelated binomial
data, extensions of these approaches to multivariate control charts
lags behind. Based upon the modified Elman neural network capa-
bilities, Niaki and Nasaji (2011) developed a method for monitor-
ing autocorrelated multivariate attribute data. Recently,
Dokouhaki and Noorossana (2013) used the Markov approach
and the copula approach for modeling the bivariate autocorrelated
binary series, and developed a CUSUM chart. However, how to
apply SPC methods in monitoring autocorrelated multivariate
binomial processes remains a challenge and has not been investi-
gated sufficiently in the literature.

The purpose of this article is to build an effective control chart
for the autocorrelated bivariate binomial observations, which is
based on the bivariate binomial autoregressive model and inte-
grates the likelihood ratio test with the EWMA procedure, referred
to as LR-EWMA chart. The rest of the paper is organized as follows.
First, we introduce an example from manufacturing industry that
motivates this research in Section 2. The bivariate binomial autore-
gressive model is introduced in Section 3. In Section 4, we discuss
the design of the proposed control chart. Following that, the per-
formance analysis and performance comparison are presented in
Section 5. In Section 6, we demonstrate implementation of the pro-
posed method using a real example. Finally, concluding remarks
are offered to summarize the major contributions of the article
and suggest issues for future research. Some technical details are
given in Appendices A and B.

2. A motivating example

We use an example taken from the manufacture of a laser gyro-
scope to motivate this research. A laser gyroscope is a device which
employs a ring laser to measure rotation speed. In the production
of a laser gyroscope, there are some relevant tests involving in
scale factor, maximum input angular rate, lock in threshold, input
axis misalignment, bias and random walk coefficient. Among the
tests, lock-in threshold test is the most important, and it is concen-
trated on two quality characteristics: In-Threshold and Out-
Threshold. In-Threshold is based on the method of gradually
decreasing laser rotation rate until the output signals disappear,
while Out-Threshold is obtained by gradually increasing laser rota-
tion rate until the output signals appear. Note that, as expected
from engineering principles, the two quality characteristics are
correlated to some extent. The lock-in threshold test are conducted
by sampling inspection, and the inspection output is ‘‘defective” or
‘‘good” based on the specifications of the two quality characteris-
tics. If the values of In-Threshold and Out-Threshold are both less
than 0:15�=s, the laser gyroscope is a ‘‘good” one, otherwise it is
a ‘‘defective” one. Thus, bivariate binomial data are collected after
a certain time. During the process of inspection, In-Threshold and
Out-Threshold are automatically measured by an electronic device
at a very high speed. To this end, the collected bivariate binomial
data is more likely to be autocorrelated.

To protect proprietary and confidential information, for illustra-
tive purpose, we only sample 20 laser gyroscopes from each batch
and obtain 100 samples. In-Threshold and Out-Threshold for each
laser gyroscope are then inspected as conforming or nonconforming
by someelectronic devices. Thenumber of nonconforming itemsper
sample for the two attributes are denoted by Xt;1 ðt ¼ 1;2; . . . ;100Þ
and Xt;2 ðt ¼ 1;2; . . . ;100Þ, respectively. Xt;1 and Xt;2 are binomially-
distributed random variables and Xt ¼ ½Xt;1 Xt;2�0 is a bivariate vari-
ablewithbivariate binomial distribution. Empirical AutoCorrelation

Functions (ACFs) and cross-correlation of the two characteristics are
plotted in Figs. 1 and 2, respectively. Both ACFs show a first order
autocorrelation around 0.4, indicating that a first-order model
should be adequate tomodel the serial dependence in this case. Fur-
thermore, the correlation between the two characteristics is around
0.7, clearly indicating strong dependence. Therefore, multivariate
attribute processeswith autocorrelated data, in particular, the auto-
correlated bivariate binomial process do exist. In the remainder of
this paper, we propose a control scheme for the autocorrelated
bivariate binomial data and give a step-by-step demonstration of
how to implement the proposed scheme in practice.

3. The bivariate binomial autoregressive model

To model the bivariate time series of counts with a finite range
in the motivating example, we use a bivariate binomial autoregres-
sive model which could describe this kind of data properly. In this
section, the bivariate binomial distribution is introduced first, and
then the bivariate binomial autoregressive model is developed
based on the bivariate binomial distribution and bivariate binomial
thinning operation.

3.1. Bivariate binomial distribution

According to the notation of Marshall and Olkin (1985), a bivari-
ate binomial distribution could be generated by the bivariate Ber-
noulli distribution. If Z1; . . . ;Zk are independent bivariate Bernoulli
random variables and they all take the four possible values (1,1),
(1,0), (0,1), (0,0) with probabilities p11; p10; p01; p00, respectively,
then the sum Y ¼ ½Y1 Y2�0 ¼ Z1 þ � � � þ Zk follows a bivariate bino-
mial distribution of Type I, abbreviated as BVBIðk; p1; p2;UÞ
(Marshall & Olkin, 1985; Scotto, Weiß, Silva, & Pereira, 2014),
where p1 ¼ p11 þ p10 and p2 ¼ p11 þ p01 are the marginal probabil-
ities and U ¼ ðp11 � p1p2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2ð1� p1Þð1� p2Þ

p�
is the correlation

coefficient between Y1 and Y2. Its marginals are univariately bino-
mially distributed, Y1 � Bðk; p1Þ and Y2 � Bðk; p2Þ. Scotto et al.
(2014) proved that the range of U is restricted to

max �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p1p2

ð1� p1Þð1� p2Þ
r

;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� p1Þð1� p2Þ

p1p2

s( )
< U

< min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ð1� p2Þ
p2ð1� p1Þ

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2ð1� p1Þ
p1ð1� p2Þ

s( )
ð1Þ

As a generalization, we can let Y ;U;V be independent
random variables, where Y � BVBIðk; p1; p2;UÞ;U � Bðn1 � k; p1Þ;
V � Bðn2 � k; p2Þ and k ¼ minðn1;n2Þ (Biswas & Hwang, 2002;
Marshall & Olkin, 1985). Then X ¼ ½X1 X2�0 ¼ ½Y1 þ U Y2 þ V �0 is
said to follow a bivariate binomial distribution of Type II, abbrevi-
ated as BVBIIðn1;n2; k; p1; p2;UÞ (Scotto et al., 2014). The joint prob-
ability of the bivariate binomial distribution is given by Hamdan
and Jensen (1976) and Marshall and Olkin (1985)

pðn1 ;n2 ;p1 ;p2 ;p11Þ ¼PðX1 ¼ x1;X2 ¼ x2Þ

¼
Xminðx1 ;n1�kÞ

j1¼0

Xminðx2 ;n2�kÞ

j2¼0

Xminðx1�j1 ;x2�j2Þ

i¼maxð0;x1�j1þx2�j2�kÞ

n1�k

j1

� �
pj1
1 ð1�p1Þn1�k�j1

� n2�k

j2

� �
pj2
2 ð1�p2Þn2�k�j2

� k

i;x1� j1� i;x2� j2� i;kþ iþ j1þ j2�x1�x2

� �
�pi

11ðp1�p11Þx1�j1�iðp2�p11Þx2�j2�ið1þp11�p1�p2Þkþiþj1þj2�x1�x2 :
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