
A Hungarian penalty-based construction algorithm to minimize
makespan and total flow time in no-wait flow shops

Dipak Laha a, Jatinder N.D. Gupta b,⇑
aDepartment of Mechanical Engineering, Jadavpur University, Kolkata, India
bCollege of Business Administration, University of Alabama in Huntsville, USA

a r t i c l e i n f o

Article history:
Received 5 December 2015
Received in revised form 2 June 2016
Accepted 3 June 2016
Available online 5 June 2016

Keywords:
Scheduling
No-wait flow shops
Makespan
Total flow time
Construction algorithm
Hungarian penalty based heuristic
Insertion heuristic
Traveling salesman problem
Optimization

a b s t r a c t

This paper presents a penalty-based construction algorithm for the no-wait flow shop scheduling prob-
lem with the objective of minimizing makespan and total flow time of jobs. The proposed method,
derived from Hungarian penalty method originally used for the classic assignment problem is employed
to generate an initial schedule of jobs, which is further improved by an insertion technique to obtain an
optimal or near-optimal schedule. The results of computational experiments on a large number of test
problems show that the proposed method performs significantly better than the state-of-the-art proce-
dures while requiring comparable computational effort.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

No-wait flow shop scheduling has long drawn the attention of
researchers during last six decades due to its NP-hard class and
practical importance. This type of problem occurs due to the pro-
cessing characteristics of a product where it is needed continuous
processing of jobs without interruption is needed, resulting in
no-wait or continuous flow shop scheduling problems (Gupta,
1976; Reddi & Ramamoorthy, 1972; Wismer, 1972). It finds a wide
range of applications in various industries and real-life applica-
tions (Framinan & Nagano, 2008; Hall & Sriskandarajah, 1996;
Nagano, Silva, & Lorena, 2012).

Since no-wait flow shop scheduling is known to be NP-hard
(Papadimitriou & Kanellakis, 1980; Röck, 1984), approximate opti-
mization algorithms such as heuristics and metaheuristics are gen-
erally preferred to find good quality solutions (optimal or close to
the optimal solutions) in relatively short computational time, espe-
cially for problems involving a large number of jobs. Heuristics are
simple and usually require much less computational effort when
compared with metaheuristics. On the other hand, metaheuristics,

stochastic in nature are robust adaptive search optimization meth-
ods used for solving more difficult and complex problems.

A number of heuristics and metaheuristics in no-wait flow shop
scheduling have been suggested in the literature mainly based on
two optimization criterion: total flow time and makespan. Note-
worthy heuristics with respect to total flow time objective have
been proposed by Rajendran and Chaudhuri (1990), Bertolissi
(2000), Aldowaisan and Allahverdi (2004), Framinan, Nagano, and
Moccellin (2010), Laha, Gupta, and Sapkal (2014), and Laha and
Sapkal (2014). Heuristics based on minimization of makespan have
been studied by Bonney and Gundry (1976), King and Spachis
(1980), Gangadharan and Rajendran (1993), Rajendran (1994),
and Laha and Chakraborty (2009).

Another class of effective construction approximate algorithms
such as farthest insertion, nearest neighbor, cheapest insertion,
originally used for solving traveling salesman problems (TSP) have
been studied in no-wait flow shop scheduling problems (Fink &
Voß, 2003; Framinan & Nagano, 2008) as well. Bagchi, Gupta, and
Sriskandarajah (2006) provided a comprehensive review of TSP
based approaches along with the computational complexity for a
variant of flow shop problems including the no-wait flow shops.
Among these three construction algorithms, it has been shown that
the farthest insertion method performs best based on a number of
extensive and independent studies (Adrabinski & Syslo, 1983;

http://dx.doi.org/10.1016/j.cie.2016.06.003
0360-8352/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: dipaklaha_jume@yahoo.com (D. Laha), guptaj@uah.edu (J.N.D.

Gupta).

Computers & Industrial Engineering 98 (2016) 373–383

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2016.06.003&domain=pdf
http://dx.doi.org/10.1016/j.cie.2016.06.003
mailto:dipaklaha_jume@yahoo.com
mailto:guptaj@uah.edu
http://dx.doi.org/10.1016/j.cie.2016.06.003
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie


Golden, Bodin, Doyle, & Stewart, 1980). However, for no-wait flow
shop scheduling with the objective of minimizing total flow time,
Fink and Voß (2003) have shown that cheapest insertion (they des-
ignated as Chins) algorithm performs much better than nearest
neighbor (they designated as NN) algorithm. Apart from Chins
and NN, they have also proposed some additional construction
methods, combing a pilot method with NN and Chins such as
Pilot-1-NN, Pilot-Chins, Pilot-1-Chins, Pilot-10-chins and Pilot-20-
Chins, however at the cost of excessive computational times.
Framinan and Nagano (2008) proposed their heuristic by applying
the farthest insertion technique in no-wait flow shops to minimize
makespan for generating initial schedule, followed by an improve-
ment method of Framinan and Leisten (2003), which is originally
used for the minimization of total flow time in permutation flow
shop scheduling problems. Therefore, in this study, construction
heuristics of Gangadharan and Rajendran (1993), heuristic of
Rajendran (1994), heuristic of Framinan and Nagano (2008), near-
est neighbor (NN), cheapest insertion (CI), and farthest insertion
(FI) algorithms are considered for comparative analysis. It may be
noted that, in general, NN, CI, and FI algorithms produce different
solutions with different starting jobs. Therefore, when a further
improved quality solution is required, it is better to run each of
these algorithms starting once from each job of n jobs and obtain
the best one among these n solutions, however, at the cost of some
additional time complexity.

Metaheuristics have been applied to solve flow shop scheduling
problems, namely the early works of Osman and Potts (1989) and
Taillard (1990). For the no-wait flow shop scheduling problems,
several metaheuristics have been studied, namely, genetic algo-
rithm (Aldowaisan & Allahverdi, 2003; Chen, Neppalli, & Aljaber,
1996), simulated annealing (Fink & Voß, 2003), tabu search
(Grabowski & Pempera, 2005), particle swarm optimization (Liu,
Wang, & Jin, 2007; Pan, Tasgetiren, & Liang, 2008; Pan, Wang,
Tasgetiren, & Zhao, 2008), artificial immune system (Kumar,
Prakash, Shankar, & Tiwari, 2006), hybrid tabu search and particle
swarm optimization (Samarghandi & ElMekkawy, 2012), ant col-
ony optimization algorithm (Shyu, Lin, & Yin, 2004), hybrid genetic
algorithm and variable neighborhood search algorithm (Jarboui,
Eddaly, & Siarry, 2011), and differential evolution (Qian, Wang,
Hub, Huang, & Wang, 2009). Constructive heuristics are frequently
used for generating good starting solutions for the metaheuristics.

In this paper, we propose a penalty-based algorithm for the no-
wait flow shop-scheduling problem to minimize makespan with
the goal of finding better makespan or total flow time schedules.
The proposed method uses Hungarian method-based technique
to obtain an initial schedule of jobs and is then improved by
employing an insertion method. The proposed method is compared
with the best-known algorithms to demonstrate its effectiveness in
finding a better quality solution in comparable CPU time.

The remainder of this paper is structured as: Section 2 gives the
problem description. A brief contribution of the existing heuristics
are described in Section 3. The proposed algorithm is presented in
Section 4. A numerical example to illustrate the proposed method
is given in Section 5. Section 6 provides the results of computa-
tional experimentation and conclusions are made in Section 7.

2. Problem description

Given the processing time pij of job i onmachine j in the no-wait
flow shop scheduling, each of n jobs is processed on m machines in
the same technological order without preemption and interruption
on or between any two consecutive machines. The problem is to
determine a schedule of n jobs that minimizes the makespan and
the total flow time. Let r = {r1,r2, . . .,rn} represent the schedule
of n jobs to be processed on m machines, and d(i, k) the minimum

delay on the first machine between the start of job i and the start of
job k (required because of the no-wait restriction). Also, let p(ri, j)
represent the processing time on machine j of the job in the ith
position of a given schedule, and let d(ri�1,ri) denote the mini-
mum delay on the first machine between the start of two consec-
utive jobs found in the (i � 1)th and ith position of the schedule.

The m-machine no-wait flow shop scheduling problem to min-
imize makespan is denoted by Fmjno-waitjCmax. Gupta (1976)
showed that only permutation schedules are feasible. Therefore,
the aim to search for the optimal or near-optimal schedule for
the Fmjno-waitjCmax problem is limited to permutation schedules
only. Further, based on the developments in Gupta (1976), d(i,k)
can be determined from the following expression:

dði; kÞ ¼ pi1 þmax max
26h6m

Xh
s¼2

pis �
Xh�1

s¼1

pks

" #
;0

 !
ð1Þ

where d0j ¼ 0 for all j e N. The delay matrix D ¼ ½dði; kÞ� gives all the
dij values between the start of any two consecutive jobs i and j (i– j)
in a given sequence of n jobs to determine the objective functionMS.

Let P denote the set of all n! possible permutation schedules in
the search space for the no-wait flow shop problem. Let r repre-
sent a permutation schedule, r�P and r ¼ ðr1;r2; . . . ;rnÞ. Then,
the completion time of rj on machine m, Cðrj;mÞ is obtained as:

Cðrj;mÞ ¼
Xj

k¼1

dðrk�1;rkÞ þ
Xm
s¼1

pðrj; sÞ ð2Þ

Therefore, using Eq. (2), the makespan of the schedule r, MS(r)
in the no-wait flow shop scheduling is given by

MSðrÞ ¼
Xn
i¼2

dðri�1;riÞ þ
Xm
j¼1

pðrn; jÞ ð3Þ

Also, using Eq. (2), total flow time for schedule r can be
obtained as:

TFTðrÞ ¼
Xn
j¼1

Cðrj;mÞ ¼
Xn
j¼2

ðnþ 1� jÞdðrj�1;rjÞ þ
Xn
j¼1

Xm
s¼1

pjs ð4Þ

Then, the Fmjno-waitjCmax problem is to find a permutation schedule
r��P such that:

MSðr�Þ ¼ min
r�P

MSðrÞ ð5Þ

Similarly, for the Fmjno-waitjPCj problem is to find a permutation
schedule r��P such that:

TFTðr�Þ ¼ min
r�P

TFTðrÞ ð6Þ

It may be noted that since the release times of the jobs are all
zeros, the completion time criterion is equivalent to the MS crite-
rion and the total completion time criterion is equivalent to the
TFT criterion. The complexity of the delay matrix D in Eq. (1) is O
(n2m) and it is executed only once. Then the makespan as well as
total flow time of any permutation schedule r can be executed
in O(n) computational effort. Therefore, the complexity of the n!
permutation schedules is O(n!n + n2m), which is exponential and
hence are not feasible to solve problems involving jobs even 10
or more jobs.

3. Relevant heuristics

In this paper, we will consider the following seven best-known
construction heuristics for comparative performance evaluation
such as the heuristics of Gangadharan and Rajendran (1993),
heuristic of Rajendran (1994), heuristic of Framinan and Nagano
(2008), heuristic of Laha et al. (2014), nearest neighbor, farthest

374 D. Laha, J.N.D. Gupta / Computers & Industrial Engineering 98 (2016) 373–383



Download	English	Version:

https://daneshyari.com/en/article/1133336

Download	Persian	Version:

https://daneshyari.com/article/1133336

Daneshyari.com

https://daneshyari.com/en/article/1133336
https://daneshyari.com/article/1133336
https://daneshyari.com/

