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a b s t r a c t

This study presents a well-known capacitated dynamic facility location problem (DFLP) that satisfies the
customer demand at a minimum cost by determining the time period for opening, closing, or retaining an
existing facility in a given location. To solve this challenging NP-hard problem, this paper develops a
unique hybrid solution algorithm that combines a rolling horizon algorithm with an accelerated
Benders decomposition algorithm. Extensive computational experiments are performed on benchmark
test instances to evaluate the hybrid algorithm’s efficiency and robustness in solving the DFLP problem.
Computational results indicate that the hybrid Benders based rolling horizon algorithm consistently
offers high quality feasible solutions in a much shorter computational time period than the stand-
alone rolling horizon and accelerated Benders decomposition algorithms in the experimental range.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of locating a set of facilities to serve customers has
received extensive attention from researchers, managers, and prac-
titioners due to the problem’s presence in almost any supply chain.
Therefore, various types of facility location problems have been
investigated in order to determine which facilities should be
opened, closed or relocated to serve select customers to minimize
the total cost (Melo et al., 2009). This paper examines a version of
the capacitated facility location problem (CFLP) in which facilities
are assumed to provide a finite amount of goods to meet time-
dependent and deterministic customer demand subject to time-
dependent cost parameters in a multi-period planning horizon.
This problem is referred to as the capacitated Dynamic Facility Loca-
tion Problem (DFLP) (Arabani and Farahani, 2012; Torres-Soto and
Uster, 2011). In order to be able to respond to varying demand,
the decision maker must determine whether to open new facilities,
keep the existing facilities open or closed, or relocate them at any
time period. In addition, the portion of customer demand needs to
be satisfied by each operating facility must be decided. The ulti-
mate objective is to minimize the total cost, which may include
transportation and operating costs, facilities opening and closing
expenses, or other costs during all planning periods.

Arabani and Farahani (2012) categorize the facility location
problem into two main groups based on whether the (re)location
decisions vary by time. The static facility location problem is
referred to as single-period facility location problem in which the
facility location decisions and their parameters are independent
of time. Since the dynamic counterpart relaxes this assumption,
dynamic model variants are more suitable to reflect the impacts
of vital factors that cannot be represented by static models, such
as incentives, energy prices, and market growth. Thus, dynamic
model variants have many application areas, including, but not
limited to, combat logistics (Gue, 2003), electronics logistics
(Manzini and Gebennini, 2008), and healthcare (Ghaderi and
Jabalameli, 2013). Current et al. (1998) further apply another clas-
sification criteria for the DFLP based on facility (re)location deci-
sions. The explicitly DFLP controls the opening and closing of a
facility in a planning horizon, whereas the parameters may change
over time, but the (re)location decisions can be made only at the
beginning of the time horizon in the implicitly DFLP. Mirchandani
and Odoni (1979) study a version of the implicitly DFLP in which
the travel times are treated as random variables with known dis-
crete probability distributions. Drezner and Wesolowsky (1991)
demonstrate an optimal solution method for the single facility
location problem with a single (re)location option with known
demand of each serving point and a continuous linear function of
time. Farahani et al. (2009) extend this work by including multiple
relocation opportunities and proposing an exact algorithm to make
optimal relocation decisions. The implicitly DFLP proposed by
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Drezner (1995) develops a progressive p-median problem that does
not consider (re)location of the existing facilities but time periods
are known when new facilities are added to the network. The com-
mon property of these studies is, although the demand is assumed
to be dynamic and deterministic as a function of time, facilities can
only be opened at the beginning of the planning period.

This study limits attention to the explicitly DFLP that represents
the impacts of time-dependent parameters on time-dependent (re)
location decisions. Even in this subgroup of facility location prob-
lems, differences exist due to several assumptions, or limitations,
on the ways facility capacities can be dynamically adjusted to cor-
respond to the dynamic structure of demand. Thus, some research-
ers assume that once a facility is located during a time period, it
will remain open until the end of the planning horizon (Scott,
1971). Some others consider the case that opening new facilities
or expanding current capacities and closing existing ones can occur
throughout the entire planning horizon (Canel et al., 2001; Lim and
Kim, 1999; Melo et al., 2006; Roy and Erlenkotter, 1982). Klose and
Drexl (2005) underline the exponentially increasing complexity of
the dynamic models over time. We also show that this problem is
NP-hard. Despite these facts, the DFLP has received extensive
attention due to recent computational advancements and in the
problems applicability to real -life applications. Researchers have
presented numerous intelligent solution ways for different ver-
sions of this problem. Jena et al. (2015) develop several valid
inequalities to strengthen the DFLPs formulations separately with
decisions about capacity expansion or reduction and facility clos-
ing and reopening. Scott (1971) proposes a near optimal dynamic
programming approach for the DFLP in which multiple facilities
can be located over equally distributed discrete time periods. Roy
and Erlenkotter (1982) propose an exact dual ascent method
embedded in a branch-and-bound search for the uncapacitated
DFLP that solves the problem instances within one second and con-
siders 25 facility and 50 customer locations, as well as 10 time
periods. Later on, Lim and Kim (1999) consider the capacitated
facilities for the same problem and develop a Lagrangian relaxation
based branch-and-bound approach supported by Gomory cuts.
Their technique finds good quality lower bounds by employing a
subgradient optimization method. Canel et al. (2001) further
extend this work by considering multi-commodity items. In the
first two stages of their algorithm, a branch-and-bound procedure
is adopted to make the facility opening and closing decisions for
each time period. At the final stage, the optimal configuration of
facilities is identified by dynamic programming. Melo et al.
(2006) introduce modular capacity concept that enables facilities
to exchange capacities. In addition, their capacitated multi-
commodity DFLP problem considers inventory activities and exter-
nal supply of goods. They investigate the complexity of each DFLP
attribute by reporting the solution quality of the mathematical
models solved by a commercial branch-and-bound solver. Jena
et al. (2014) study the multi-commodity DFLP with generalized
modular capacities in which facility closing, reopening, capacity
reductions, and expansions are taken into account. They present
a Langrangian based algorithm that finds good quality solutions
within reasonable CPU times. Their technique consistently obtains
solutions within 4% from the best known lower bound, even for the
problem instances the commercial solver fails to report any solu-
tion due to memory limitation.

The multi-period international facility location problem (IFLP),
introduced to the literature by Canel and Khumawala (1996), is a
variant of the DFLP and seeks either to minimize the total cost of
dynamically opening facilities in domestic/foreign countries or
maximize the after-tax profits. Opening new facilities is the only
facility related decision in the IFLP. However, the optimal time of
the location decisions, the total quantities that need to be pro-

duced in each location and the shipment amounts from facilities
to customers are taken into account. Canel and Khumawala
(1996) further develop few mixed integer programs (MIP) for both
the capacitated and uncapacitated IFLP, and by solving these prob-
lems in a commercial solver, they demonstrate how sensitive the
location decisions are for specific problem parameters, such as
with/without demand shortages. In a follow-up study, Canel and
Khumawala (1997) tackle the uncapacitated IFLP with a branch-
and-bound algorithm that is shown to be faster than the MIP for-
mulation by a factor of 50 on some problem instances. Finally, a
heuristic proposed by Canel and Khumawala (2001) demonstrates
significant computational time gains for a similar IFLP problem.

Torres-Soto and Uster (2011) study two versions of the DFLP. In
the first variant, they allow the facility opening and closing deci-
sions throughout each period, whereas the second variant assumes
located facilities are open during the entire planning period. After
presenting a MIP for each, they develop only the Benders decompo-
sition algorithm for the second problem and a Benders and a
Lagrangian relaxation based algorithm for the first problem. This
study presents the same problem as the first DFLP variant in
(Torres-Soto and Uster, 2011). No assumption is made on the
demand structures, and the facility opening/closing decisions can
be made during any time period. The major contribution of this
study is twofold. First, it proposes three main solution approaches:
(i) a rolling horizon (RH) heuristic, (ii) an accelerated Benders
decomposition algorithm, and (iii) a hybrid (RH- Benders) decom-
position algorithm. Second, in addition to the largest set of prob-
lem instances introduced by Torres-Soto and Uster (2011), we
introduce larger problem sets and compare both their methods
with our novel algorithms in terms of solution quality and time.

The rest of this paper is organized as follows: Section 2 intro-
duces the mathematical model formulation of the DFLP and dis-
cusses some basic properties. The proposed solution methods
including rolling horizon approximation, accelerated, and hybrid
Benders decomposition algorithms are presented in Section 3. A
comparative discussion of these algorithms over some benchmark
instances from the literature is demonstrated in Section 4. Finally,
Section 5 concludes this paper by providing possible future
research directions.

2. Problem formulation

This section introduces the mathematical formulation of the
½DFLP� that was proposed by Torres-Soto and Uster (2011). Let
G ¼ ðN ;AÞ be a complete directed graph where N denotes the set
of nodes and A denotes the set of arcs. Set N consists of set of cus-
tomers I and set of facilities J i.e., N ¼ I [ J and set A represents
the transportation arcs between the facilities to customers. In
½DFLP�, we allow the facilities to open, close or remain operational
in a given time period to meet the customer demand. The ultimate
goal is to determine the optimum locations of capacitated facilities
in each time period that will satisfy the customer demand at a
minimum possible total cost. We note that when fVjtgj2J ;t2T ¼
fUjtgj2J ;t2T ¼ 0 and fqjgj2J ! þ1, the ½DFLP� becomes the classical

uncapacitated fixed-charge location problem which is known to be
an NP-hard problem. Thus, ½DFLP� is also an NP-hard problem.

The major cost components in ½DFLP� are the cost related to
opening, closing and operating facilities and transportation costs
across all time periods. The sets, input parameters, and decision
variables used in this study are summarized in Table 1.

The ½DFLP� can be formulated as follows:

½DFLP� Minimize
X
j2J

X
t2T

wjtYjt þ gjtUjt þ ljtV jt þ
X
i2I

cijtXijt

 !
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