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a b s t r a c t

This paper considers jointly the production control and preventive maintenance problem in a manufac-
turing system. This system is composed of a single unreliable machine that produces one or two types of
products with constant and different demand, a customer and a buffer between the machine and the cus-
tomer. Machine failures are time-dependent, i.e. the machine can fail at any time, so a block-type preven-
tive maintenance policy is proposed to increase the system life. This policy is coupled with a hedging
point policy which controls the machine production speed. Between each element of the system, constant
transportation delays are considered, i.e. a conveyor between the machine and its downstream buffer and
a transport between the buffer and the customer. Then, a continuous-flowmodel is proposed to represent
the overall dynamics of the system. This model allows us to take into account explicitly the transporta-
tion delays. The main objective of this work is to find the optimal preventive maintenance period by
means of infinitesimal perturbation analysis technique as well as the optimal hedging point in order
to minimize the expected average cost function. For this, we find the gradient estimators of the cost func-
tion from a theoretical sample path study. Then we integrate them in a simulation algorithm to find a
numerical estimation of the solution. Simulation results highlight our theoretical results.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Since integrated production/maintenance strategy has been
defined, it has become an important topic which catches growing
attention, due to the total obtained cost savings (Colledani &
Tolio, 2012). Indeed, the production planning and maintenance
scheduling are two major issues which can hold quality and pro-
ductivity in manufacturing companies even if uncertain conditions
can occur such as failures, delays or client demands (Lu, Cui, & Han,
2015). On one hand, the use of a preventive maintenance policy
has benefits such as the diminution of the probability of break-
downs and the increase of equipment life and availability of the
system (Hadidi, Al-Turki, & Rahim, 2012; Van Horenbeek,
Pintelon, & Muchiri, 2010). On the other hand, the chosen produc-
tion control enables an increase of the quality service and customer
satisfaction (Gershwin, 1994). The aim of this work is to implement
both a preventive maintenance and a production control policy, in
order to obtain a strategy which permits to minimize the average

total cost. We suppose that the failures are time dependent. It
means that the machine may fail even if it does not produce
(Tan, 1998). Moreover, we assume that the failures have an
increasing failure rate (Lu et al., 2015). Some strategies integrating
production and maintenance focus on the scheduling of the pro-
duction and the maintenance actions to minimize the delays in
the execution of the jobs (Aramon Bajestani, Banjevic, & Beck,
2014; Gustavsson, Patriksson, Strömberg, Wojciechowski, &
Önnheim, 2014; Liu, Wang, & Peng, 2015; Xiang, Cassady, Jin, &
Zhang, 2014; Zammori, Braglia, & Castellano, 2014). Recently, other
strategies combining the production and the maintenance have
been proposed to control the quality of products (Bouslah,
Gharbi, & Pellerin, 2014; Colledani & Tolio, 2012). The joint produc-
tion control and maintenance problem has been addressed by
many authors considering different preventive maintenance poli-
cies, such as age-based preventive maintenance, periodic preven-
tive maintenance policy of block-type (Barlow & Hunter, 1960) or
even condition based maintenance (Zhang, Ye, & Xie, 2014) and
production control policies (Campos, Seatzu, & Xie, 2014). In an
age replacement preventive maintenance policy, a corrective
maintenance is made when a machine fails, or a preventive main-
tenance action is undertaken after T time units of use without a
failure. By contrast, in a block preventive maintenance policy, a
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preventive maintenance action is performed every T time units,
independently of the age of the machine. At the failure, a corrective
maintenance is carried out. In economic terms, the age replace-
ment preventive maintenance policy outperforms the block
replacement preventive maintenance policy. Nevertheless, in prac-
tice, a block replacement preventive maintenance policy is easier
to implement because there is no need to update the time of the
next preventive maintenance after a maintenance action (Barlow
& Proschan, 1975). Different variations of both policies, such as
minimal repair at the failure (Chang, 2014; Chen, Xiao, & Zhang,
2015) or other variations on the maintenance costs are summa-
rized in Nakagawa (2006). In the proposed approach, we choose
a preventive maintenance of block-type due to its simplicity to
implement and manage it.

Many of the strategies that integrate production control and
maintenance scheduling are based on the construction of inven-
tory buffers to avoid machines starvation in the production process
or to fulfill the demands in periods in which machines fail. Some of
these strategies are based on the average consumption of a product
in a preventive maintenance cycle (Assid, Gharbi, & Hajji, 2015;
Chelbi & Ait-Kadi, 2004; Gharbi, Kenné, & Beit, 2007; Rezg, Xie, &
Mati, 2004; Salameh & Ghattas, 2001). Indeed, it has been shown
that the construction of a buffer can be an optimal strategy in pro-
duction systems, composed of machines subject to random fail-
ures. With this purpose, Kimemia and Gershwin (1983) introduce
a pioneer work in which the authors show that it is possible to
keep a low level of work-in-process inventory to meet demand
while machines are unavailable. The proposed strategy is the
well-known hedging point policy. Then, the optimality of this pol-
icy is proved in Akella and Kumar (1986) under certain conditions
(constant demand, homogeneous Markov processes, etc.) for a
single-product and a single-machine system. In their work, the
optimal discounted inventory cost is obtained for the problem con-
sidered in Kimemia and Gershwin (1983). A counterpart of the
solution proposed by Akella and Kumar (1986) is obtained in
Glasserman (1995), in which additionally, the average inventory
cost of this policy is considered. Martinelli and Valigi (2004) pre-
sent another variation of this policy, considering bounds on the
inventory and backlog costs. The authors prove that using these
bounds does not affect the optimality of this policy.

The hedging point policy has been used coupledwith an age pre-
ventive maintenance policy (Gharbi & Kenné, 2000; Gharbi &
Kenné, 2005) or with a preventive maintenance of block-type
(Berthaut, Gharbi, & Dhouib, 2011; Berthaut, Gharbi, Kenné, &
Boulet, 2010; Gomez Urrutia, Hennequin, & Rezg, 2011), to propose
joint production and maintenance strategies. For example, Gharbi
and Kenné (2000) study several identical machines (i.e. identical
transition rates of their stochastic process) producing a single-
product. The states of the machines are represented by a Markov
process. The same problem is studied for a manufacturing system
with non-identical machines in Gharbi and Kenné (2005).
Berthaut et al. (2010) define two hedging points. The first one con-
trols the production rate and the second one controls the preventive
maintenance actions. Thus, if the value of the inventory level is
greater than the hedging point that controls the preventive mainte-
nance actions, then the preventive maintenance is performed,
otherwise, the preventive maintenance is skipped. In Berthaut
et al. (2011) a hedging point policy is coupled with amodified block
replacement preventive maintenance to study a manufacturing cell
made up of a single machine. In this case, the preventive mainte-
nance is skipped if the time elapsed between the last maintenance
action and the preventivemaintenance period is lower than a speci-
fic threshold of time. Gomez Urrutia et al. (2011) consider a produc-
tion system composed of a single-machine producing a single-
product. The authors couple a hedging point policy with a block
replacement preventive maintenance policy.

Generally, most of the resolution methods for problems cou-
pling production and maintenance are based on simulation
approaches (for example, see Kröning & Denkena, 2013; Lynch,
Adendorff, Yadavalli, & Adetunji, 2013; Roux, Duvivier, Quesnel,
& Ramat, 2013; an interesting literature review is provided in
Alrabghi & Tiwari, 2015). Other approaches combine analytical
methods, design of experiments based on response surface
methodology and simulation, such as in most of the aforemen-
tioned references, dealing with joint strategies of production plan-
ning and preventive maintenance (see, for example, Azadeh,
Sheikhalishahi, Firoozi, & Khalili, 2013; Berthaut et al., 2010;
Berthaut et al., 2011; Gharbi & Kenné, 2000; Gharbi & Kenné,
2005). Other works use analytical models combined with simula-
tion to find approximate results of the optimal strategy such as
in Rezg et al. (2004), Chelbi and Ait-Kadi (2004), and Chen, Ye,
and Xie (2013). In the proposed approach, we make use of the
advantages of the chosen analytical resolution method to combine
analytical results with simulation. The analytical resolution
method we choose is the Infinitesimal Perturbation Analysis
(IPA). In this method, a sample path derivative is computed from
two sample paths: the nominal and the perturbed sample path.
The perturbed sample path is built from the nominal sample path
applying a perturbation sufficiently small to the parameter with
respect to which the sample path derivative is computed. This
guarantees that the sequence of the events of the perturbed sample
path does not change. The main condition to apply IPA is the unbi-
asedness of the derivative estimator. It makes possible the use of
IPA for reliable sensitivity analysis or for the use in control and
optimization methods (Sun, Cassandras, Wardi, Panayiotou, &
Riley, 2004). Thus, the results obtained analytically using IPA can
be integrated in a simulation algorithm. IPA has been first devel-
oped for queuing systems (Ho & Cao, 1983) and then extended to
Markov systems (Cao, 2007). This technique is used in a stochastic
flow model of a manufacturing workcenter in Yu and Cassandras
(2002) to obtain gradient estimators of the throughput and buffer
overflow with regard to threshold control parameters. Yu and
Cassandras (2004) consider a manufacturing system consisting of
a source supplying parts to a server. An intermediate buffer is con-
sidered to store the parts before being processed. The unbiased
gradient estimates of the throughput and of the overflow rate are
provided. In Paschalidis, Liu, Cassandras, and Panayiotou (2004),
IPA is used to determine the inventory level that minimizes the
expected inventory costs of each stage of a supply chain composed
of two stages. The considered supply chain produces a single-
product and the production is controlled by a base-stock policy.
In Gomez Urrutia et al. (2011) IPA is used to determine the optimal
hedging point and the preventive maintenance period that mini-
mize the average total cost (inventory and maintenance costs). In
the present work, the purpose is to extend the study of Gomez
Urrutia et al. (2011), considering delays between each component
of the manufacturing system. This feature in the study of the sys-
tem complicates the definition of the hedging point, because the
quantity of produced parts at a specific time is different of the
quantity of parts arriving to the buffer.

Few works consider the delays explicitly, such as production or
transportation delays in the model. The delays are taken into
account explicitly for the first time in Van Ryzin, Lou, and
Gershwin (1991) in a job shop with unreliable machines. In Xie,
Hennequin, and Mourani (2013), delays are considered in a trans-
fer line, in which the materials flowing out from the machines wait
before arriving to the downstream buffer. The analytical model we
choose is a Continuous Flow Model (CFM). Indeed, this model
allows introducing the transfer and transportation delays. CFM is
widely used to describe the behavior of the products flowing
through the production lines in discrete manufacturing systems
when there is an important number of products or to model
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