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a b s t r a c t

Conventional data envelopment analysis (DEA) models assume that the inputs of a specific period are
consumed to produce the outputs of the same period. However, in some applications, the inputs of a per-
iod can be thought to partially contribute to the outputs of several subsequent periods. This can be
described as time lag effects for performance evaluation. A few researches have presented DEA models
using the time lag weights of input or output factors to address the time lag effects. In those models,
the weights for the time lag effects can vary by period. In this paper, we propose another DEA model with
consistent weights for time lag effects throughout the periods. The proposed model is more realistic and
more discriminative than the existing time lag model. We present the results of a case example for com-
parison of the proposed model and the existing time lag model.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Data envelopment analysis (DEA), developed by Charnes,
Cooper, and Rhodes (1978), is a method to evaluate the perfor-
mance of decision making units (DMUs) by measuring the relative
efficiency of a DMU with the inputs and outputs of a specific per-
iod. There are many extensions of the original CCRmodel in view of
various points. In particular, Banker, Charnes, and Cooper (1984)
suggested the BCC model to extend the CCR model to accommo-
date technologies that exhibit variable returns to scale. Some alter-
native DEA approaches have been reported to use various types of
data, for example, use of categorical data (Banker & Morey, 1986),
qualitative data (Cook, Kress, & Seiford, 1996), and ordinal data
(Toloo & Nalchigar, 2011). Kim, Park, and Park (1999) developed
an imprecise DEA model to deal with imprecise data. Uncertainty
or fuzziness in data set was also discussed in the context of DEA
by Wu (2009) and Dotoli, Epicoco, Falagario, and Sciancalepore
(2015). Amin and Toloo (2007) suggested an integrated DEA model
to find the most efficient DMU. Toloo and Nalchigar (2011)
extended to identify the most efficient supplier in presence of both
cardinal and ordinal data.

The fundamental goal of DEA models is not to rank but to group
DMUs into two sets, that is, efficient and inefficient DMUs. How-
ever, decision-makers are often interested in a complete ranking
in the evaluation of the DMUs beyond the dichotomized classifica-
tion. This is the reason why the lack of discrimination has been

discussed frequently in the DEA literature. This is also the reason
for the growing interest in complete ranking techniques in the con-
text of DEA even though there are tremendous papers about
multiple-criteria decision making (MCDM) (Yoon & Hwang, 1995;
Zavadskas, Turskis, & Kildiene, 2012) and analytic hierarchy pro-
cess (AHP) (Saaty, 1980). There are various kinds of approaches
to improve discrimination power of classical DEA models. Some
researchers considered the weight restrictions for the improve-
ment. Allen, Athanassopoulos, Dyson, and Thanassoulis (1997)
classified the types of weight restriction in detail as cone ratio
weight restriction (Charnes, Cooper, Wei, & Huang, 1989), specifi-
cation of relative bounds on input or output weights (Wong &
Beasley, 1990), and absolute weight bounds (Podinovski &
Athanassopoulos, 1998; Roll, Cook, & Golany, 1991). Adler,
Friedman, and Sinuany-Stern (2002) reviewed and classified vari-
ous ranking methods which is another approach for the improve-
ment. Andersen and Petersen (1993) suggested a super-efficiency
model to discriminate and rank efficient DMUs. Charnes, Clark,
Cooper, and Golany (1985) proposed the idea to rank efficient
DMUs by the number of times they appear in the reference sets
of inefficient units. Doyle and Green (1994) used a cross evaluation
matrix, which consists of efficiency and cross-efficiency values, for
ranking DMUs. Jeong and Ok (2013) modified the cross evaluation
matrix by replacing efficiency with super-efficiency to get a full
ranking of DMUs.

Some researchers proposed integrated models with analytic
hierarchy process. Wang, Liu, and Elhag (2008) suggested an inte-
grated methodology of AHP and DEA to evaluate bridge risks of
bridge structures, based on which the maintenance priorities of

http://dx.doi.org/10.1016/j.cie.2016.01.003
0360-8352/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: jeong@jbnu.ac.kr (B.H. Jeong).

Computers & Industrial Engineering 93 (2016) 267–274

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2016.01.003&domain=pdf
http://dx.doi.org/10.1016/j.cie.2016.01.003
mailto:jeong@jbnu.ac.kr
http://dx.doi.org/10.1016/j.cie.2016.01.003
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie


the bridge structures can be decided. Yang and Kuo (2003) also
proposed an integrated approach of AHP and DEA to solve a plant
layout design problem.Wei, Zhang, and Zhang (2000) developed an
inverse DEA model for estimating inputs or outputs. The inverse
DEA model can estimate the amount of outputs (inputs) should
be changed to keep the determined efficient score when a DMU
changes some of its inputs (outputs). Hadi-Vencheha and
Foroughib (2006) also proposed a generalized DEA model for the
estimation problem.

As above mentioned, the standard DEA model has been
extended in various viewpoints. However, these extended DEA
models were developed under the basic assumption that inputs
of a specific period are consumed to produce outputs in the same
period. This underlying assumption may not be valid in some situ-
ations such as performance evaluation on R&D activity, marketing
activity or educational activity. In those situations, outputs of a
specific period can be thought to be produced by consumption of
not only inputs in the same period but also the inputs in multiple
previous periods. In other words, inputs of a specific period can be
considered to contribute to the outputs of several subsequent peri-
ods as well as the same period. For example, publication of aca-
demic papers and application of patents are important outputs of
research activity. But the papers or patents may be the results from
research efforts over several years. In other words, there are some
time lag between input period and output period. Furthermore, the
length of time lag is uncertain and depends on areas in which per-
formance is to be evaluated. Thus, general DEA models cannot be
applied to obtain efficiency scores in presence of time lag effect.

To deal with such situations, a couple of researchers have pro-
posed DEA models considering time lag effects in recent years.
Özpeynici and Köksalan (2007) developed the multi-period input
(MPI) model, which is based on an integrated model developed
by Post and Spronk (1999), to capture the time lag between the
inputs and outputs in DEA. The model is formulated under the
assumption that the outputs of a DMU in a specific period are
the results of the inputs of several previous periods. They also gave
a MPI model to restrict input weights by adding weight range con-
straints like the approach to specify relative bounds of weight
(Wong & Beasley, 1990). But, those constraints are not to keep
the time lag weight consistently period by period. Zhang and
Jeong (2012a, 2012b) introduced a multi-period output (MPO)
model to capture the time lag effect in another viewpoint. That
is, this model was developed in the perspective that the inputs of
a specific period contribute to the outputs of several subsequent
periods. In those two models, the magnitude of time lag effects is
represented by time lag weights and they are determined freely
to maximize the efficiency score of DMUs. As a result, the time
lag weights for the same output or input factors are varies from
period to period. In other words, the magnitude of time lag effects
of an input (output) factor can be changed according to the spent
(yielded) period. This is not realistic because the characteristics
of lag effect in productions of outputs depends on not input period
but the time difference between input period and output period.
Thus, it is more realistic that the magnitude of time lag effects is
consistent over periods for the same input or output factors. In this
paper, We suggest a modified model adopting the consistency of
the time lag weights. The model is a multi-period output model
that has the same time lag weight throughout the measurement
periods for each output factor.

In the next section, we compare two schemes to consider the
time lag effects and present the existing DEA models based on
these schemes. In Section 3, we propose a modified DEA model
considering consistent time lag effects and present some proper-
ties between the efficiency scores by the modified model and the
existing time lag model. In Section 4, we provide a case example
of a Korean R&D program and compare the results of the proposed

model and the existing time lag model. Finally, we present some
concluding remarks.

2. Time lag effects and DEA models

In this section, we introduce the methods to adopt the time lag
effects and give two existing DEA models adopting the time lag
effect.

2.1. Schemes for considering time lag effects

Time lag refers to an interval of time between two related phe-
nomena. In measuring the efficiency of DMUs with inputs and out-
puts, the time lag effect indicates the time it might take to
transform inputs into outputs, and that the inputs can contribute
to the outputs of multiple subsequent periods.

Two types of models adopting time lag effects were proposed
from different perspectives. The first one considered the time lag
effect from the perspective of the outputs in a period. In the model,
the outputs in period t are the results of the inputs of the previous
D periods, t; t � 1; . . . ; t � Dþ 1. That is, D is the length of the time
periods to handle the time lag effects in the model. We call this
scheme the MPI model because the inputs of multiple periods con-
tribute to the outputs of a single period. Conversely, the second one
considered that the inputs in period t contribute to the outputs of sub-
sequent D periods, t; t þ 1; . . . ; t þ D� 1. This second model is called
the MPO model because the inputs of a single period contribute to
the outputs of multiple subsequent periods. Fig. 1 shows two schemes
for considering the time lag effects when D ¼ 3. As shown in the fig-
ure, the MPI model considers the outputs of period 3 to be the results
of the inputs of periods 1–3, whereas the MPO model considers the
inputs of period 1 to contribute to the outputs of periods 1–3.

According to the types considering time lag effect, the efficiency
score of a period should be defined in different form. In MPI model,
the efficiency score of a period can be defined as the ratio of the
outputs of a single period to the inputs of multiple periods. On
the other hand, it can be defined as the ratio of outputs of multiple
periods to the inputs of a single period in MPOmodel. For example,
the MPI model defines the efficiency of period 3 as the ratio of the
outputs of period 3 to the inputs of periods 1–3, while the MPO
model defines the efficiency of period 1 as the ratio of the outputs
of periods 1–3 to the inputs of period 1. Then, two models have a
non-linear objective function but it can be linearized by fixing
the weighted sum of inputs to 1.

2.2. Existing multi-period DEA models for time lag effects

In this subsection, we present the existing models considering
the time lag effects explained in 2.1. Let’s consider the efficiencies
of n DMUs during T time periods under the time lag effects. We
assume that all DMUs use m different inputs to produce s different
outputs in each period. Let Xijt and Yrjt denote the ith (i ¼ 1; . . . ;m)
input and rth (r ¼ 1; . . . ; s) output of DMU j at period t, respectively.
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Fig. 1. Two schemes for time lag effects.
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