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Abstract

In this study, we consider the center problem of a cubic polynomial differential system with a nilpotent linear part. The analysis
is based on the application of the Cherkas method to the Takens normal form. The analysis requires many computations, which are
verified by employing one algebraic manipulator and extensive use of the computer algebra system called Singular.
c⃝ 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction and preliminary results

We consider the following differential system with a nilpotent linear part

ẋ = y + P(x, y), ẏ = Q(x, y), (1.1)

where P and Q are analytic in a neighborhood of the origin without constants as linear terms. We assume that the
origin is an isolated singular point. The monodromy problem involves characterizing when a singular point is either a
focus or a center. Andreev [4] solved this problem for nilpotent singular points.

Theorem 1.1 (Andreev). Let y = φ(x) be the solution of y + P(x, y) = 0 that passes through the origin. Consider
the functions

ψ(x) = Q(x, φ(x)) = aαxα + O(xα+1)

∆(x) = div(P, Q)(x, φ(x)) = bβ̃x β̃ + O(x β̃+1),

with aα ≠ 0, α ≥ 2 and bβ̃ ≠ 0, β̃ ≥ 1, or ∆(x) ≡ 0. Then, the origin of (1.1) is monodromic if and only if

aα < 0, α = 2ñ − 1 is an odd number and one of the following conditions holds: (i) β̃ > ñ − 1; (ii) β̃ = ñ − 1 and
b2
β̃

+ 4ñaα < 0; (iii) ∆(x) ≡ 0.
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The Andreev number n of a monodromic singular point at the origin of system (1.1) is the integer ñ ≥ 2 given in
Theorem 1.1. In fact this Andreev number n is invariant under analytic (formal) orbital conjugations of system (1.1)
(see [15]). However, when (1.1) is analytically conjugate or analytically orbitally conjugate to another differential
system, β̃ generally changes although the monodromic relation β̃ ≥ ñ − 1 remains invariant (see [15,17]).

First, we recall some known results regarding the normal forms of nilpotent singular points. If the origin of system
(1.1) is monodromic, then by changing (x, y) → (x, y − φ(x)) and scaling the axes (x, y) → (sx,−sy) with
s = (−1/aα)1/(2−2ñ), system (1.1) is transformed into the pre-normal form

ẋ = y(−1 + X1(x, y)) ẏ = f (x)+ yδ(x)+ y2Y0(x, y), (1.2)

where X1(0, 0) = 0, f (x) = x2ñ−1
+ · · · with ñ ≥ 2 and either δ(x) ≡ 0 or δ(x) = bβ̃x β̃ + · · · with β̃ ≥ ñ − 1

(see [15,17]).
Takens [33] proved that a system with a nilpotent singular point at the origin can be formally transformed into a

generalized Liénard system

ẋ = −y, ẏ = a(x)+ yb̃(x), (1.3)

where a(x) = as x s(1 + O(x)) with s ≥ 2 and b̃(x) with b̃(0) = 0 are formal power series. Later, Strózyna and
Zoladek [32] proved that this normal form can be achieved through an analytic change of variables. Moreover, in
the monodromic case, s = 2n − 1 with n ≥ 2, and after changing x → u with u(x) = (2n

 x
0 a(z)dz)1/(2n)

=

x(a2n−1 + O(x))1/(2n) and the reparameterization of time t → τ with dt/dτ = u2n−1/a(x) = a−1/(2n)
2n−1 + O(x), we

can simplify the normal form above into

ẋ = −y, ẏ = x2n−1
+ yb(x), (1.4)

where b(x) is an analytic function obtained from a(x) and b̃(x) of the form b(x) =


i≥β bi x i . From system (1.4),
we can characterize the centers of monodromic nilpotent singularities under the condition that b(x) has to be an odd
function, as shown by the following result.

Theorem 1.2 (Moussu). Consider the analytic system (1.4) where its origin is a monodromic critical point, i.e., it
satisfies one of the following conditions: (i) β > n − 1; (ii) β = n − 1 and b2

β − 4n < 0; (iii) b(x) ≡ 0. Then, the
origin is a center if and only if b(x) is an odd function.

Consequently, all of the nilpotent centers are analytically orbitally reversible. This result was given by Moussu
without using the analyticity of the change that transforms system (1.1) into the normal form (1.4) (see [29]). In [29],
it was also proved generically that the nilpotent centers do not have an analytic first integral in the neighborhood of
a nilpotent singularity (also see [7]). However, there are examples of families of nilpotent centers with an analytic
first integral (see [7,8,14,20,21,17,24]). For instance, the nilpotent centers of system (1.1), where P and Q are
homogeneous polynomials of the same odd degree, always have an analytic first integral (see [3,5]). A generalization
of this family inside differential systems that are sums of quasi-homogeneous polynomials was given by [1] (also
see [14]). In fact, the existence of the analytic first integral for this family was proved by [14], while [1] proved that
this family has a C∞ Lyapunov function.

As shown in the next sections, it is not necessary to obtain the complete normal form for practical use of the normal
form (1.4). It is sufficient to write the system in the pre-normal form

ẋ = −y + O(|(x, y)|r ), ẏ = x2n−1
+ ybr (x)+ O(|(x, y)|r ), (1.5)

for suitable r , and the polynomial br (x) must be an odd function to have a center.
From the normal form (1.4) and the pre-normal form (1.5), we can derive an algorithm to compute the focal

values of a monodromic nilpotent singular point. However, this approach is computationally expensive, even when
determining the stability (the first non-null focal value) of a nilpotent singular point. Thus, new methods for computing
the focal values are of interest. Several methods have been developed in recent decades for detecting nilpotent centers
and [23] provided a short review of them.

The oldest method is the characterization of a nilpotent center through the Poincaré return map using the Liapunov
generalized coordinates (see [6]). Using Liapunov generalized coordinates is a very difficult problem, so other methods
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