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Abstract

Modeling the term structure of government bond yields is of great interest to macroeconomists and financial market
practitioners. It is crucial for bonds and derivatives pricing, risk management, and reveals market expectations, which is essential
for monetary policy decisions. This paper suggests the use of a differential evolutionary algorithm to estimate yield curves for
US Treasury bonds. It considers parsimonious modeling to avoid non-convergence and high instability of traditional optimization
algorithms when estimating model parameters caused by the choice of their initial values during curve fitting. In this approach,
the whole yield curve for different maturities is obtained by models parameters estimates. Computational experiments show that
the differential evolutionary algorithm provides more accurate yield curves than the ones derived by nonlinear least squares and
genetic algorithm approaches.
c⃝ 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

The yield curve displays the connection between the nominal interest rates of default zero-coupon securities and
their term to maturity. It is an essential tool in finance and macroeconomics. In finance, the term structure of interest
rates is employed in risk management, portfolio selection, financial corporative decisions and, mainly, in financial
bond pricing [35]. In macroeconomics, the yield curve is a key element in monetary decision making, as well as
a measure of market expectations of future interest rates, inflation, and economic activity, given the current market
conditions [59].

Yield curve estimation basically is a nonlinear parameter optimization problem within the framework of parsimo-
nious modeling. The information behind the interest rate term structure reflects the true market status and expectations.
Thus its estimation should be as accurate as possible. The function developed by [44] and its augmented version, pro-
posed by [57], are the most important parsimonious yield curve models used by major central banks that report their
estimations to the Bank for International Settlements [3].

∗ Corresponding author. Tel.: +55 19 988021389.
E-mail addresses: maciel@dca.fee.unicamp.br (L. Maciel), gomide@dca.fee.unicamp.br (F. Gomide), ballini@eco.unicamp.br (R. Ballini).

http://dx.doi.org/10.1016/j.matcom.2016.04.004
0378-4754/ c⃝ 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.matcom.2016.04.004&domain=pdf
http://www.elsevier.com/locate/matcom
http://dx.doi.org/10.1016/j.matcom.2016.04.004
http://www.elsevier.com/locate/matcom
mailto:maciel@dca.fee.unicamp.br
mailto:gomide@dca.fee.unicamp.br
mailto:ballini@eco.unicamp.br
http://dx.doi.org/10.1016/j.matcom.2016.04.004


L. Maciel et al. / Mathematics and Computers in Simulation 129 (2016) 10–30 11

Proposals of simple functional forms for representing a yield curve have received considerable attention in the
literature [30,4,23]. However, the issue of the algorithms to estimate the parameters of the models is often neglected.
The use of mathematical programming algorithms to solve highly nonlinear optimization problems have been limited
by non-convergence (i.e., the results may not correspond to a global optimum), and high sensitive results to the
initialization of the algorithms [27]. For example, [14,4,30] analyzed the algorithms currently adopted in yield curve
parameter estimation. More recently, [42] addressed the use of a wide range of nonlinear optimization algorithms to
estimate parameters of yield curves from actual bond market data. The authors conclude that because of the nature
of the problem, certain classes of algorithms are more effective than others. They also highlight the fact that slight
differences in the estimated curves can result in significant differences when pricing bonds or portfolios [42].

The use of genetic algorithms (GA) to estimate the term structure of interest rates in the Spanish bond market
was suggested in [27]. The authors show that the GA approach reduces the risk of false convergence and provides
stable parameters without imposing arbitrary restrictions. [22] uses GA and splines to estimate the yield curve and
found similar results. These studies suggest that methods based on a computational intelligence and evolutionary
computation techniques may also be effective as a tool for yield curve modeling.

Evolutionary computation methods are one of the important components of computational intelligence. They are
particularly valuable to handle complex search spaces often found in highly nonlinear optimization problems. Based
on the underlying relation between optimization and biological evolution, evolutionary computation uses iterative
progress of a population of candidate solutions selected in a guided random search with implicit parallelism [16]. The
field of evolutionary computation and algorithms (EA) includes genetic algorithms (GA), evolutionary programming
(EP), evolution strategies (ES), genetic programming (GP), and differential evolution (DE).1

Applications of evolutionary computation in economics and finance are generally associated with GP and GA [53].
For example, a dynamic proportion portfolio insurance strategy using GP and principal component analysis to build
an equation tree for the risk multiplier was proposed by [8]. They show that their approach gives more profitable
solutions than the proportion portfolio insurance strategy. As an extension of the GP, [12] developed a genetic network
programming technique with control nodes aiming at portfolio optimization of the Japanese stock market. They
conclude that the extended GP model outperforms traditional models in terms of accuracy and efficiency. [46,21]
also exploits GP for the stock trading and bankruptcy prediction, respectively.2

Because the less restrictive assumptions about the parameter space required, GA are a widely used tool in
financial optimization, especially for portfolio optimization [32,38,45,37]. [6] uses GA in portfolio optimization
considering different risk measures. Portfolio selection considering minimum transaction lots, cardinality constraints,
and sector capitalization was also tackled by [54] using GA. [28] developed a model that includes cost dependency
for portfolio selection and their results reveal that GA perform better than an electromagnetism-inspired algorithm. A
genetic relation algorithm with guided mutation was derived by [11] to solve large-scale portfolio optimization. The
effectiveness of five state-of-the-art multi-objective EA and a steady-state EA for the mean–variance cardinality-
constrained portfolio optimization problem has been compared by [1].3 In addition, GA have been successfully
used in portfolio value-at-risk forecasting [36], stock market trading [20], in examining the relationship between
wealth dynamics and risk preferences in multi-asset artificial stock market evaluations [9], and in financial portfolio
management using technical analysis indicators [29].

The DE algorithm was introduced by [55]. Unlike standard EA, DE uses the difference of candidate solutions to
search for the extrema of real valued functions. Compared against alternative evolutionary algorithms, the features that
turn the DE algorithm attractive to solve optimization problems are its simplicity of implementation4; its high accuracy
and robustness to deal with distinct classes problems, such as separable, non-separable, modal, and multimodal
functions [64,60,10,31,13]; very few control parameters (three in classical DE)5; and, finally, for expensive and large-
scale optimization problems, its space complexity is lower than of most EA.

1 In all evolutionary computation approaches there are different algorithms available, which mainly differ in terms of its operators. Recently, [34]
provides a comparison of different evolutionary algorithms in several case studies.

2 Bankruptcy prediction modeling was also evaluated using GA by [52].
3 For a survey of metaheuristics in portfolio optimization, see [58].
4 Methods based on particle swarm optimization are also straightforward to implement, but [15,50] note the largely superior performance of DE

in certain varieties of problems.
5 Studies such as that of [49] show that adaptation rules for some control parameters improve the performance of the DE algorithm without

affecting its computational complexity.
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